.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/plot_hprss.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_plot_hprss.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_plot_hprss.py:


=====================================
Harmonic-percussive source separation
=====================================

This notebook illustrates how to separate an audio signal into
its harmonic and percussive components.

We'll compare the original median-filtering based approach of
`Fitzgerald, 2010 <http://arrow.dit.ie/cgi/viewcontent.cgi?article=1078&context=argcon>`_
and its margin-based extension due to `Dreidger, Mueller and Disch, 2014
<http://www.terasoft.com.tw/conf/ismir2014/proceedings/T110_127_Paper.pdf>`_.

.. GENERATED FROM PYTHON SOURCE LINES 17-24

.. code-block:: default


    import numpy as np
    import matplotlib.pyplot as plt

    import librosa
    import librosa.display








.. GENERATED FROM PYTHON SOURCE LINES 25-26

Load an example clip with harmonics and percussives

.. GENERATED FROM PYTHON SOURCE LINES 26-29

.. code-block:: default

    y, sr = librosa.load(librosa.ex('fishin'), duration=5, offset=10)









.. GENERATED FROM PYTHON SOURCE LINES 30-31

Compute the short-time Fourier transform of y

.. GENERATED FROM PYTHON SOURCE LINES 31-33

.. code-block:: default

    D = librosa.stft(y)








.. GENERATED FROM PYTHON SOURCE LINES 34-37

Decompose D into harmonic and percussive components

:math:`D = D_\text{harmonic} + D_\text{percussive}`

.. GENERATED FROM PYTHON SOURCE LINES 37-40

.. code-block:: default

    D_harmonic, D_percussive = librosa.decompose.hpss(D)









.. GENERATED FROM PYTHON SOURCE LINES 41-42

We can plot the two components along with the original spectrogram

.. GENERATED FROM PYTHON SOURCE LINES 42-63

.. code-block:: default


    # Pre-compute a global reference power from the input spectrum
    rp = np.max(np.abs(D))

    fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)

    img = librosa.display.specshow(librosa.amplitude_to_db(np.abs(D), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[0])
    ax[0].set(title='Full spectrogram')
    ax[0].label_outer()

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[1])
    ax[1].set(title='Harmonic spectrogram')
    ax[1].label_outer()

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[2])
    ax[2].set(title='Percussive spectrogram')
    fig.colorbar(img, ax=ax)




.. image-sg:: /auto_examples/images/sphx_glr_plot_hprss_001.png
   :alt: Full spectrogram, Harmonic spectrogram, Percussive spectrogram
   :srcset: /auto_examples/images/sphx_glr_plot_hprss_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 64-77

The default HPSS above assigns energy to each time-frequency bin according to
whether a horizontal (harmonic) or vertical (percussive) filter responds higher
at that position.

This assumes that all energy belongs to either a harmonic or percussive source,
but does not handle "noise" well.  Noise energy ends up getting spread between
D_harmonic and D_percussive.

If we instead require that the horizontal filter responds more than the vertical
filter *by at least some margin*, and vice versa, then noise can be removed
from both components.

Note: the default (above) corresponds to margin=1

.. GENERATED FROM PYTHON SOURCE LINES 77-85

.. code-block:: default


    # Let's compute separations for a few different margins and compare the results below
    D_harmonic2, D_percussive2 = librosa.decompose.hpss(D, margin=2)
    D_harmonic4, D_percussive4 = librosa.decompose.hpss(D, margin=4)
    D_harmonic8, D_percussive8 = librosa.decompose.hpss(D, margin=8)
    D_harmonic16, D_percussive16 = librosa.decompose.hpss(D, margin=16)









.. GENERATED FROM PYTHON SOURCE LINES 86-88

In the plots below, note that vibrato has been suppressed from the harmonic
components, and vocals have been suppressed in the percussive components.

.. GENERATED FROM PYTHON SOURCE LINES 88-125

.. code-block:: default

    fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10))
    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[0, 0])
    ax[0, 0].set(title='Harmonic')

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[0, 1])
    ax[0, 1].set(title='Percussive')

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic2), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[1, 0])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive2), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[1, 1])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic4), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[2, 0])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive4), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[2, 1])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic8), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[3, 0])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive8), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[3, 1])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_harmonic16), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[4, 0])

    librosa.display.specshow(librosa.amplitude_to_db(np.abs(D_percussive16), ref=rp),
                             y_axis='log', x_axis='time', ax=ax[4, 1])

    for i in range(5):
        ax[i, 0].set(ylabel='margin={:d}'.format(2**i))
        ax[i, 0].label_outer()
        ax[i, 1].label_outer()



.. image-sg:: /auto_examples/images/sphx_glr_plot_hprss_002.png
   :alt: Harmonic, Percussive
   :srcset: /auto_examples/images/sphx_glr_plot_hprss_002.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  4.203 seconds)


.. _sphx_glr_download_auto_examples_plot_hprss.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_hprss.py <plot_hprss.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_hprss.ipynb <plot_hprss.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_