Caution

You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.

Source code for librosa.beat

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Beat and tempo
==============
.. autosummary::
   :toctree: generated/

   beat_track
   plp
   tempo
"""

import numpy as np
import scipy
import scipy.stats

from ._cache import cache
from . import core
from . import onset
from . import util
from .feature import tempogram, fourier_tempogram
from .util.exceptions import ParameterError

__all__ = ["beat_track", "tempo", "plp"]


[docs]def beat_track( y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120.0, tightness=100, trim=True, bpm=None, prior=None, units="frames", ): r"""Dynamic programming beat tracker. Beats are detected in three stages, following the method of [#]_: 1. Measure onset strength 2. Estimate tempo from onset correlation 3. Pick peaks in onset strength approximately consistent with estimated tempo .. [#] Ellis, Daniel PW. "Beat tracking by dynamic programming." Journal of New Music Research 36.1 (2007): 51-60. http://labrosa.ee.columbia.edu/projects/beattrack/ Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of ``y`` onset_envelope : np.ndarray [shape=(n,)] or None (optional) pre-computed onset strength envelope. hop_length : int > 0 [scalar] number of audio samples between successive ``onset_envelope`` values start_bpm : float > 0 [scalar] initial guess for the tempo estimator (in beats per minute) tightness : float [scalar] tightness of beat distribution around tempo trim : bool [scalar] trim leading/trailing beats with weak onsets bpm : float [scalar] (optional) If provided, use ``bpm`` as the tempo instead of estimating it from ``onsets``. prior : scipy.stats.rv_continuous [optional] An optional prior distribution over tempo. If provided, ``start_bpm`` will be ignored. units : {'frames', 'samples', 'time'} The units to encode detected beat events in. By default, 'frames' are used. Returns ------- tempo : float [scalar, non-negative] estimated global tempo (in beats per minute) beats : np.ndarray [shape=(m,)] estimated beat event locations in the specified units (default is frame indices) .. note:: If no onset strength could be detected, beat_tracker estimates 0 BPM and returns an empty list. Raises ------ ParameterError if neither ``y`` nor ``onset_envelope`` are provided, or if ``units`` is not one of 'frames', 'samples', or 'time' See Also -------- librosa.onset.onset_strength Examples -------- Track beats using time series input >>> y, sr = librosa.load(librosa.ex('choice'), duration=10) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> tempo 135.99917763157896 Print the frames corresponding to beats >>> beats array([ 3, 21, 40, 59, 78, 96, 116, 135, 154, 173, 192, 211, 230, 249, 268, 287, 306, 325, 344, 363]) Or print them as timestamps >>> librosa.frames_to_time(beats, sr=sr) array([0.07 , 0.488, 0.929, 1.37 , 1.811, 2.229, 2.694, 3.135, 3.576, 4.017, 4.458, 4.899, 5.341, 5.782, 6.223, 6.664, 7.105, 7.546, 7.988, 8.429]) Track beats using a pre-computed onset envelope >>> onset_env = librosa.onset.onset_strength(y, sr=sr, ... aggregate=np.median) >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env, ... sr=sr) >>> tempo 135.99917763157896 >>> beats array([ 3, 21, 40, 59, 78, 96, 116, 135, 154, 173, 192, 211, 230, 249, 268, 287, 306, 325, 344, 363]) Plot the beat events against the onset strength envelope >>> import matplotlib.pyplot as plt >>> hop_length = 512 >>> fig, ax = plt.subplots(nrows=2, sharex=True) >>> times = librosa.times_like(onset_env, sr=sr, hop_length=hop_length) >>> M = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length) >>> librosa.display.specshow(librosa.power_to_db(M, ref=np.max), ... y_axis='mel', x_axis='time', hop_length=hop_length, ... ax=ax[0]) >>> ax[0].label_outer() >>> ax[0].set(title='Mel spectrogram') >>> ax[1].plot(times, librosa.util.normalize(onset_env), ... label='Onset strength') >>> ax[1].vlines(times[beats], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='Beats') >>> ax[1].legend() """ # First, get the frame->beat strength profile if we don't already have one if onset_envelope is None: if y is None: raise ParameterError("y or onset_envelope must be provided") onset_envelope = onset.onset_strength( y=y, sr=sr, hop_length=hop_length, aggregate=np.median ) # Do we have any onsets to grab? if not onset_envelope.any(): return (0, np.array([], dtype=int)) # Estimate BPM if one was not provided if bpm is None: bpm = tempo( onset_envelope=onset_envelope, sr=sr, hop_length=hop_length, start_bpm=start_bpm, prior=prior, )[0] # Then, run the tracker beats = __beat_tracker(onset_envelope, bpm, float(sr) / hop_length, tightness, trim) if units == "frames": pass elif units == "samples": beats = core.frames_to_samples(beats, hop_length=hop_length) elif units == "time": beats = core.frames_to_time(beats, hop_length=hop_length, sr=sr) else: raise ParameterError("Invalid unit type: {}".format(units)) return (bpm, beats)
[docs]@cache(level=30) def tempo( y=None, sr=22050, onset_envelope=None, hop_length=512, start_bpm=120, std_bpm=1.0, ac_size=8.0, max_tempo=320.0, aggregate=np.mean, prior=None, ): """Estimate the tempo (beats per minute) Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of the time series onset_envelope : np.ndarray [shape=(n,)] pre-computed onset strength envelope hop_length : int > 0 [scalar] hop length of the time series start_bpm : float [scalar] initial guess of the BPM std_bpm : float > 0 [scalar] standard deviation of tempo distribution ac_size : float > 0 [scalar] length (in seconds) of the auto-correlation window max_tempo : float > 0 [scalar, optional] If provided, only estimate tempo below this threshold aggregate : callable [optional] Aggregation function for estimating global tempo. If `None`, then tempo is estimated independently for each frame. prior : scipy.stats.rv_continuous [optional] A prior distribution over tempo (in beats per minute). By default, a pseudo-log-normal prior is used. If given, ``start_bpm`` and ``std_bpm`` will be ignored. Returns ------- tempo : np.ndarray [scalar] estimated tempo (beats per minute) See Also -------- librosa.onset.onset_strength librosa.feature.tempogram Notes ----- This function caches at level 30. Examples -------- >>> # Estimate a static tempo >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30) >>> onset_env = librosa.onset.onset_strength(y, sr=sr) >>> tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr) >>> tempo array([143.555]) >>> # Or a static tempo with a uniform prior instead >>> import scipy.stats >>> prior = scipy.stats.uniform(30, 300) # uniform over 30-300 BPM >>> utempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, prior=prior) >>> utempo array([161.499]) >>> # Or a dynamic tempo >>> dtempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, ... aggregate=None) >>> dtempo array([ 89.103, 89.103, 89.103, ..., 123.047, 123.047, 123.047]) >>> # Dynamic tempo with a proper log-normal prior >>> prior_lognorm = scipy.stats.lognorm(loc=np.log(120), scale=120, s=1) >>> dtempo_lognorm = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, ... aggregate=None, ... prior=prior_lognorm) >>> dtempo_lognorm array([ 89.103, 89.103, 89.103, ..., 123.047, 123.047, 123.047]) Plot the estimated tempo against the onset autocorrelation >>> import matplotlib.pyplot as plt >>> # Convert to scalar >>> tempo = tempo.item() >>> utempo = utempo.item() >>> # Compute 2-second windowed autocorrelation >>> hop_length = 512 >>> ac = librosa.autocorrelate(onset_env, 2 * sr // hop_length) >>> freqs = librosa.tempo_frequencies(len(ac), sr=sr, ... hop_length=hop_length) >>> # Plot on a BPM axis. We skip the first (0-lag) bin. >>> fig, ax = plt.subplots() >>> ax.semilogx(freqs[1:], librosa.util.normalize(ac)[1:], ... label='Onset autocorrelation', basex=2) >>> ax.axvline(tempo, 0, 1, alpha=0.75, linestyle='--', color='r', ... label='Tempo (default prior): {:.2f} BPM'.format(tempo)) >>> ax.axvline(utempo, 0, 1, alpha=0.75, linestyle=':', color='g', ... label='Tempo (uniform prior): {:.2f} BPM'.format(utempo)) >>> ax.set(xlabel='Tempo (BPM)', title='Static tempo estimation') >>> ax.grid(True) >>> ax.legend() Plot dynamic tempo estimates over a tempogram >>> fig, ax = plt.subplots() >>> tg = librosa.feature.tempogram(onset_envelope=onset_env, sr=sr, ... hop_length=hop_length) >>> librosa.display.specshow(tg, x_axis='time', y_axis='tempo', cmap='magma', ax=ax) >>> ax.plot(librosa.times_like(dtempo), dtempo, ... color='c', linewidth=1.5, label='Tempo estimate (default prior)') >>> ax.plot(librosa.times_like(dtempo_lognorm), dtempo_lognorm, ... color='c', linewidth=1.5, linestyle='--', ... label='Tempo estimate (lognorm prior)') >>> ax.set(title='Dynamic tempo estimation') >>> ax.legend() """ if start_bpm <= 0: raise ParameterError("start_bpm must be strictly positive") win_length = core.time_to_frames(ac_size, sr=sr, hop_length=hop_length).item() tg = tempogram( y=y, sr=sr, onset_envelope=onset_envelope, hop_length=hop_length, win_length=win_length, ) # Eventually, we want this to work for time-varying tempo if aggregate is not None: tg = aggregate(tg, axis=1, keepdims=True) # Get the BPM values for each bin, skipping the 0-lag bin bpms = core.tempo_frequencies(tg.shape[0], hop_length=hop_length, sr=sr) # Weight the autocorrelation by a log-normal distribution if prior is None: logprior = -0.5 * ((np.log2(bpms) - np.log2(start_bpm)) / std_bpm) ** 2 else: logprior = prior.logpdf(bpms) # Kill everything above the max tempo if max_tempo is not None: max_idx = np.argmax(bpms < max_tempo) logprior[:max_idx] = -np.inf # Get the maximum, weighted by the prior # Using log1p here for numerical stability best_period = np.argmax(np.log1p(1e6 * tg) + logprior[:, np.newaxis], axis=0) return bpms[best_period]
[docs]def plp( y=None, sr=22050, onset_envelope=None, hop_length=512, win_length=384, tempo_min=30, tempo_max=300, prior=None, ): """Predominant local pulse (PLP) estimation. [#]_ The PLP method analyzes the onset strength envelope in the frequency domain to find a locally stable tempo for each frame. These local periodicities are used to synthesize local half-waves, which are combined such that peaks coincide with rhythmically salient frames (e.g. onset events on a musical time grid). The local maxima of the pulse curve can be taken as estimated beat positions. This method may be preferred over the dynamic programming method of `beat_track` when either the tempo is expected to vary significantly over time. Additionally, since `plp` does not require the entire signal to make predictions, it may be preferable when beat-tracking long recordings in a streaming setting. .. [#] Grosche, P., & Muller, M. (2011). "Extracting predominant local pulse information from music recordings." IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 1688-1701. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] sampling rate of ``y`` onset_envelope : np.ndarray [shape=(n,)] or None (optional) pre-computed onset strength envelope hop_length : int > 0 [scalar] number of audio samples between successive ``onset_envelope`` values win_length : int > 0 [scalar] number of frames to use for tempogram analysis. By default, 384 frames (at ``sr=22050`` and ``hop_length=512``) corresponds to about 8.9 seconds. tempo_min, tempo_max : numbers > 0 [scalar], optional Minimum and maximum permissible tempo values. ``tempo_max`` must be at least ``tempo_min``. Set either (or both) to `None` to disable this constraint. prior : scipy.stats.rv_continuous [optional] A prior distribution over tempo (in beats per minute). By default, a uniform prior over ``[tempo_min, tempo_max]`` is used. Returns ------- pulse : np.ndarray, shape=[(n,)] The estimated pulse curve. Maxima correspond to rhythmically salient points of time. See Also -------- beat_track librosa.onset.onset_strength librosa.feature.fourier_tempogram Examples -------- Visualize the PLP compared to an onset strength envelope. Both are normalized here to make comparison easier. >>> y, sr = librosa.load(librosa.ex('brahms')) >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr) >>> pulse = librosa.beat.plp(onset_envelope=onset_env, sr=sr) >>> # Or compute pulse with an alternate prior, like log-normal >>> import scipy.stats >>> prior = scipy.stats.lognorm(loc=np.log(120), scale=120, s=1) >>> pulse_lognorm = librosa.beat.plp(onset_envelope=onset_env, sr=sr, ... prior=prior) >>> melspec = librosa.feature.melspectrogram(y=y, sr=sr) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=3, sharex=True) >>> librosa.display.specshow(librosa.power_to_db(melspec, ... ref=np.max), ... x_axis='time', y_axis='mel', ax=ax[0]) >>> ax[0].set(title='Mel spectrogram') >>> ax[0].label_outer() >>> ax[1].plot(librosa.times_like(onset_env), ... librosa.util.normalize(onset_env), ... label='Onset strength') >>> ax[1].plot(librosa.times_like(pulse), ... librosa.util.normalize(pulse), ... label='Predominant local pulse (PLP)') >>> ax[1].set(title='Uniform tempo prior [30, 300]') >>> ax[1].label_outer() >>> ax[2].plot(librosa.times_like(onset_env), ... librosa.util.normalize(onset_env), ... label='Onset strength') >>> ax[2].plot(librosa.times_like(pulse_lognorm), ... librosa.util.normalize(pulse_lognorm), ... label='Predominant local pulse (PLP)') >>> ax[2].set(title='Log-normal tempo prior, mean=120', xlim=[5, 20]) >>> ax[2].legend() PLP local maxima can be used as estimates of beat positions. >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env) >>> beats_plp = np.flatnonzero(librosa.util.localmax(pulse)) >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) >>> times = librosa.times_like(onset_env, sr=sr) >>> ax[0].plot(times, librosa.util.normalize(onset_env), ... label='Onset strength') >>> ax[0].vlines(times[beats], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='Beats') >>> ax[0].legend() >>> ax[0].set(title='librosa.beat.beat_track') >>> ax[0].label_outer() >>> # Limit the plot to a 15-second window >>> times = librosa.times_like(pulse, sr=sr) >>> ax[1].plot(times, librosa.util.normalize(pulse), ... label='PLP') >>> ax[1].vlines(times[beats_plp], 0, 1, alpha=0.5, color='r', ... linestyle='--', label='PLP Beats') >>> ax[1].legend() >>> ax[1].set(title='librosa.beat.plp', xlim=[5, 20]) >>> ax[1].xaxis.set_major_formatter(librosa.display.TimeFormatter()) """ # Step 1: get the onset envelope if onset_envelope is None: onset_envelope = onset.onset_strength( y=y, sr=sr, hop_length=hop_length, aggregate=np.median ) if tempo_min is not None and tempo_max is not None and tempo_max <= tempo_min: raise ParameterError( "tempo_max={} must be larger than tempo_min={}".format(tempo_max, tempo_min) ) # Step 2: get the fourier tempogram ftgram = fourier_tempogram( onset_envelope=onset_envelope, sr=sr, hop_length=hop_length, win_length=win_length, ) # Step 3: pin to the feasible tempo range tempo_frequencies = core.fourier_tempo_frequencies( sr=sr, hop_length=hop_length, win_length=win_length ) if tempo_min is not None: ftgram[tempo_frequencies < tempo_min] = 0 if tempo_max is not None: ftgram[tempo_frequencies > tempo_max] = 0 # Step 3: Discard everything below the peak ftmag = np.log1p(1e6 * np.abs(ftgram)) if prior is not None: ftmag += prior.logpdf(tempo_frequencies)[:, np.newaxis] peak_values = ftmag.max(axis=0, keepdims=True) ftgram[ftmag < peak_values] = 0 # Normalize to keep only phase information ftgram /= util.tiny(ftgram) ** 0.5 + np.abs(ftgram.max(axis=0, keepdims=True)) # Step 5: invert the Fourier tempogram to get the pulse pulse = core.istft(ftgram, hop_length=1, length=len(onset_envelope)) # Step 6: retain only the positive part of the pulse cycle np.clip(pulse, 0, None, pulse) # Return the normalized pulse return util.normalize(pulse)
def __beat_tracker(onset_envelope, bpm, fft_res, tightness, trim): """Internal function that tracks beats in an onset strength envelope. Parameters ---------- onset_envelope : np.ndarray [shape=(n,)] onset strength envelope bpm : float [scalar] tempo estimate fft_res : float [scalar] resolution of the fft (sr / hop_length) tightness: float [scalar] how closely do we adhere to bpm? trim : bool [scalar] trim leading/trailing beats with weak onsets? Returns ------- beats : np.ndarray [shape=(n,)] frame numbers of beat events """ if bpm <= 0: raise ParameterError("bpm must be strictly positive") # convert bpm to a sample period for searching period = round(60.0 * fft_res / bpm) # localscore is a smoothed version of AGC'd onset envelope localscore = __beat_local_score(onset_envelope, period) # run the DP backlink, cumscore = __beat_track_dp(localscore, period, tightness) # get the position of the last beat beats = [__last_beat(cumscore)] # Reconstruct the beat path from backlinks while backlink[beats[-1]] >= 0: beats.append(backlink[beats[-1]]) # Put the beats in ascending order # Convert into an array of frame numbers beats = np.array(beats[::-1], dtype=int) # Discard spurious trailing beats beats = __trim_beats(localscore, beats, trim) return beats # -- Helper functions for beat tracking def __normalize_onsets(onsets): """Maps onset strength function into the range [0, 1]""" norm = onsets.std(ddof=1) if norm > 0: onsets = onsets / norm return onsets def __beat_local_score(onset_envelope, period): """Construct the local score for an onset envlope and given period""" window = np.exp(-0.5 * (np.arange(-period, period + 1) * 32.0 / period) ** 2) return scipy.signal.convolve(__normalize_onsets(onset_envelope), window, "same") def __beat_track_dp(localscore, period, tightness): """Core dynamic program for beat tracking""" backlink = np.zeros_like(localscore, dtype=int) cumscore = np.zeros_like(localscore) # Search range for previous beat window = np.arange(-2 * period, -np.round(period / 2) + 1, dtype=int) # Make a score window, which begins biased toward start_bpm and skewed if tightness <= 0: raise ParameterError("tightness must be strictly positive") txwt = -tightness * (np.log(-window / period) ** 2) # Are we on the first beat? first_beat = True for i, score_i in enumerate(localscore): # Are we reaching back before time 0? z_pad = np.maximum(0, min(-window[0], len(window))) # Search over all possible predecessors candidates = txwt.copy() candidates[z_pad:] = candidates[z_pad:] + cumscore[window[z_pad:]] # Find the best preceding beat beat_location = np.argmax(candidates) # Add the local score cumscore[i] = score_i + candidates[beat_location] # Special case the first onset. Stop if the localscore is small if first_beat and score_i < 0.01 * localscore.max(): backlink[i] = -1 else: backlink[i] = window[beat_location] first_beat = False # Update the time range window = window + 1 return backlink, cumscore def __last_beat(cumscore): """Get the last beat from the cumulative score array""" maxes = util.localmax(cumscore) med_score = np.median(cumscore[np.argwhere(maxes)]) # The last of these is the last beat (since score generally increases) return np.argwhere((cumscore * maxes * 2 > med_score)).max() def __trim_beats(localscore, beats, trim): """Final post-processing: throw out spurious leading/trailing beats""" smooth_boe = scipy.signal.convolve(localscore[beats], scipy.signal.hann(5), "same") if trim: threshold = 0.5 * ((smooth_boe ** 2).mean() ** 0.5) else: threshold = 0.0 valid = np.argwhere(smooth_boe > threshold) return beats[valid.min() : valid.max()]