Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.feature.inverse.mfcc_to_audio¶
- librosa.feature.inverse.mfcc_to_audio(mfcc, n_mels=128, dct_type=2, norm='ortho', ref=1.0, lifter=0, **kwargs)[source]¶
- Convert Mel-frequency cepstral coefficients to a time-domain audio signal - This function is primarily a convenience wrapper for the following steps: - Convert mfcc to Mel power spectrum ( - mfcc_to_mel)
- Convert Mel power spectrum to time-domain audio ( - mel_to_audio)
 - Parameters
- mfccnp.ndarray [shape=(n_mfcc, n)]
- The Mel-frequency cepstral coefficients 
- n_melsint > 0
- The number of Mel frequencies 
- dct_type{1, 2, 3}
- Discrete cosine transform (DCT) type By default, DCT type-2 is used. 
- normNone or ‘ortho’
- If - dct_typeis 2 or 3, setting- norm='ortho'uses an orthonormal DCT basis.- Normalization is not supported for - dct_type=1.
- refnumber or callable
- Reference power for (inverse) decibel calculation 
- lifternumber >= 0
- If - lifter>0, apply inverse liftering (inverse cepstral filtering):- M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2 
- kwargsadditional keyword arguments
- Parameters to pass through to - mel_to_audio
 
- Returns
- ynp.ndarray [shape=(n)]
- A time-domain signal reconstructed from mfcc