Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.griffinlim_cqt¶
- librosa.griffinlim_cqt(C, n_iter=32, sr=22050, hop_length=512, fmin=None, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect', res_type='kaiser_fast', dtype=None, length=None, momentum=0.99, init='random', random_state=None)[source]¶
Approximate constant-Q magnitude spectrogram inversion using the “fast” Griffin-Lim algorithm.
Given the magnitude of a constant-Q spectrogram (
C
), the algorithm randomly initializes phase estimates, and then alternates forward- and inverse-CQT operations. 1This implementation is based on the (fast) Griffin-Lim method for Short-time Fourier Transforms, 2 but adapted for use with constant-Q spectrograms.
- 1
D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
- 2
Perraudin, N., Balazs, P., & Søndergaard, P. L. “A fast Griffin-Lim algorithm,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013.
- Parameters
- Cnp.ndarray [shape=(n_bins, n_frames)]
The constant-Q magnitude spectrogram
- n_iterint > 0
The number of iterations to run
- srnumber > 0
Audio sampling rate
- hop_lengthint > 0
The hop length of the CQT
- fminnumber > 0
Minimum frequency for the CQT.
If not provided, it defaults to C1.
- bins_per_octaveint > 0
Number of bins per octave
- tuningfloat
Tuning deviation from A440, in fractions of a bin
- filter_scalefloat > 0
Filter scale factor. Small values (<1) use shorter windows for improved time resolution.
- norm{inf, -inf, 0, float > 0}
Type of norm to use for basis function normalization. See
librosa.util.normalize
.- sparsityfloat in [0, 1)
Sparsify the CQT basis by discarding up to
sparsity
fraction of the energy in each basis.Set
sparsity=0
to disable sparsification.- windowstr, tuple, or function
Window specification for the basis filters. See
filters.get_window
for details.- scalebool
If
True
, scale the CQT response by square-root the length of each channel’s filter. This is analogous tonorm='ortho'
in FFT.If
False
, do not scale the CQT. This is analogous tonorm=None
in FFT.- pad_modestring
Padding mode for centered frame analysis.
See also:
librosa.stft
andnumpy.pad
.- res_typestring
The resampling mode for recursive downsampling.
By default, CQT uses an adaptive mode selection to trade accuracy at high frequencies for efficiency at low frequencies.
Griffin-Lim uses the efficient (fast) resampling mode by default.
See
librosa.resample
for a list of available options.- dtypenumeric type
Real numeric type for
y
. Default is inferred to match the precision of the input CQT.- lengthint > 0, optional
If provided, the output
y
is zero-padded or clipped to exactlylength
samples.- momentumfloat > 0
The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method. Values near 1 can lead to faster convergence, but above 1 may not converge.
- initNone or ‘random’ [default]
If ‘random’ (the default), then phase values are initialized randomly according to
random_state
. This is recommended when the inputC
is a magnitude spectrogram with no initial phase estimates.If
None
, then the phase is initialized fromC
. This is useful when an initial guess for phase can be provided, or when you want to resume Griffin-Lim from a previous output.- random_stateNone, int, or np.random.RandomState
If int, random_state is the seed used by the random number generator for phase initialization.
If np.random.RandomState instance, the random number generator itself.
If
None
, defaults to the current np.random object.
- Returns
- ynp.ndarray [shape=(n,)]
time-domain signal reconstructed from
C
See also
Examples
A basis CQT inverse example
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), sr=None) >>> # Get the CQT magnitude, 7 octaves at 36 bins per octave >>> C = np.abs(librosa.cqt(y=y, sr=sr, bins_per_octave=36, n_bins=7*36)) >>> # Invert using Griffin-Lim >>> y_inv = librosa.griffinlim_cqt(C, sr=sr, bins_per_octave=36) >>> # And invert without estimating phase >>> y_icqt = librosa.icqt(C, sr=sr, bins_per_octave=36)
Wave-plot the results
>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) >>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0]) >>> ax[0].set(title='Original', xlabel=None) >>> ax[0].label_outer() >>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1]) >>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None) >>> ax[1].label_outer() >>> librosa.display.waveshow(y_icqt, sr=sr, color='r', ax=ax[2]) >>> ax[2].set(title='Magnitude-only icqt reconstruction')