Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.util.shear¶
- librosa.util.shear(X, factor=1, axis=- 1)[source]¶
Shear a matrix by a given factor.
The column
X[:, n]
will be displaced (rolled) byfactor * n
This is primarily useful for converting between lag and recurrence representations: shearing with
factor=-1
converts the main diagonal to a horizontal. Shearing withfactor=1
converts a horizontal to a diagonal.- Parameters
- Xnp.ndarray [ndim=2] or scipy.sparse matrix
The array to be sheared
- factorinteger
The shear factor:
X[:, n] -> np.roll(X[:, n], factor * n)
- axisinteger
The axis along which to shear
- Returns
- X_shearsame type as
X
The sheared matrix
- X_shearsame type as
Examples
>>> E = np.eye(3) >>> librosa.util.shear(E, factor=-1, axis=-1) array([[1., 1., 1.], [0., 0., 0.], [0., 0., 0.]]) >>> librosa.util.shear(E, factor=-1, axis=0) array([[1., 0., 0.], [1., 0., 0.], [1., 0., 0.]]) >>> librosa.util.shear(E, factor=1, axis=-1) array([[1., 0., 0.], [0., 0., 1.], [0., 1., 0.]])