Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.yin¶
- librosa.yin(y, fmin, fmax, sr=22050, frame_length=2048, win_length=None, hop_length=None, trough_threshold=0.1, center=True, pad_mode='reflect')[source]¶
Fundamental frequency (F0) estimation using the YIN algorithm.
YIN is an autocorrelation based method for fundamental frequency estimation 1. First, a normalized difference function is computed over short (overlapping) frames of audio. Next, the first minimum in the difference function below
trough_threshold
is selected as an estimate of the signal’s period. Finally, the estimated period is refined using parabolic interpolation before converting into the corresponding frequency.- 1
De Cheveigné, Alain, and Hideki Kawahara. “YIN, a fundamental frequency estimator for speech and music.” The Journal of the Acoustical Society of America 111.4 (2002): 1917-1930.
- Parameters
- ynp.ndarray [shape=(n,)]
audio time series.
- fmin: number > 0 [scalar]
minimum frequency in Hertz. The recommended minimum is
librosa.note_to_hz('C2')
(~65 Hz) though lower values may be feasible.- fmax: number > 0 [scalar]
maximum frequency in Hertz. The recommended maximum is
librosa.note_to_hz('C7')
(~2093 Hz) though higher values may be feasible.- srnumber > 0 [scalar]
sampling rate of
y
in Hertz.- frame_lengthint > 0 [scalar]
length of the frames in samples. By default,
frame_length=2048
corresponds to a time scale of about 93 ms at a sampling rate of 22050 Hz.- win_lengthNone or int > 0 [scalar]
length of the window for calculating autocorrelation in samples. If
None
, defaults toframe_length // 2
- hop_lengthNone or int > 0 [scalar]
number of audio samples between adjacent YIN predictions. If
None
, defaults toframe_length // 4
.- trough_threshold: number > 0 [scalar]
absolute threshold for peak estimation.
- centerboolean
If
True
, the signal y is padded so that frameD[:, t]
is centered at y[t * hop_length]. IfFalse
, thenD[:, t]
begins aty[t * hop_length]
. Defaults toTrue
, which simplifies the alignment ofD
onto a time grid by means oflibrosa.core.frames_to_samples
.- pad_modestring or function
If
center=True
, this argument is passed tonp.pad
for padding the edges of the signaly
. By default (pad_mode="reflect"
),y
is padded on both sides with its own reflection, mirrored around its first and last sample respectively. Ifcenter=False
, this argument is ignored. .. see also:: np.pad
- Returns
- f0: np.ndarray [shape=(n_frames,)]
time series of fundamental frequencies in Hertz.
See also
librosa.pyin
Fundamental frequency (F0) estimation using probabilistic YIN (pYIN).
Examples
Computing a fundamental frequency (F0) curve from an audio input
>>> y = librosa.chirp(440, 880, duration=5.0) >>> librosa.yin(y, 440, 880) array([442.66354675, 441.95299983, 441.58010963, ..., 871.161732 , 873.99001454, 877.04297681])