Caution

You're reading the documentation for a development version. For the latest released version, please have a look at 0.9.1.

librosa.decompose.nn_filter

librosa.decompose.nn_filter(S, *, rec=None, aggregate=None, axis=- 1, **kwargs)[source]

Filtering by nearest-neighbors.

Each data point (e.g, spectrogram column) is replaced by aggregating its nearest neighbors in feature space.

This can be useful for de-noising a spectrogram or feature matrix.

The non-local means method 1 can be recovered by providing a weighted recurrence matrix as input and specifying aggregate=np.average.

Similarly, setting aggregate=np.median produces sparse de-noising as in REPET-SIM 2.

1

Buades, A., Coll, B., & Morel, J. M. (2005, June). A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE.

2

Rafii, Z., & Pardo, B. (2012, October). “Music/Voice Separation Using the Similarity Matrix.” International Society for Music Information Retrieval Conference, 2012.

Parameters
Snp.ndarray

The input data (spectrogram) to filter. Multi-channel is supported.

rec(optional) scipy.sparse.spmatrix or np.ndarray

Optionally, a pre-computed nearest-neighbor matrix as provided by librosa.segment.recurrence_matrix

aggregatefunction

aggregation function (default: np.mean)

If aggregate=np.average, then a weighted average is computed according to the (per-row) weights in rec.

For all other aggregation functions, all neighbors are treated equally.

axisint

The axis along which to filter (by default, columns)

**kwargs

Additional keyword arguments provided to librosa.segment.recurrence_matrix if rec is not provided

Returns
S_filterednp.ndarray

The filtered data, with shape equivalent to the input S.

Raises
ParameterError

if rec is provided and its shape is incompatible with S.

Notes

This function caches at level 30.

Examples

De-noise a chromagram by non-local median filtering. By default this would use euclidean distance to select neighbors, but this can be overridden directly by setting the metric parameter.

>>> y, sr = librosa.load(librosa.ex('brahms'),
...                      offset=30, duration=10)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> chroma_med = librosa.decompose.nn_filter(chroma,
...                                          aggregate=np.median,
...                                          metric='cosine')

To use non-local means, provide an affinity matrix and aggregate=np.average.

>>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity',
...                                         metric='cosine', sparse=True)
>>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec,
...                                          aggregate=np.average)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=5, sharex=True, sharey=True, figsize=(10, 10))
>>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[0])
>>> ax[0].set(title='Unfiltered')
>>> ax[0].label_outer()
>>> librosa.display.specshow(chroma_med, y_axis='chroma', x_axis='time', ax=ax[1])
>>> ax[1].set(title='Median-filtered')
>>> ax[1].label_outer()
>>> imgc = librosa.display.specshow(chroma_nlm, y_axis='chroma', x_axis='time', ax=ax[2])
>>> ax[2].set(title='Non-local means')
>>> ax[2].label_outer()
>>> imgr1 = librosa.display.specshow(chroma - chroma_med,
...                          y_axis='chroma', x_axis='time', ax=ax[3])
>>> ax[3].set(title='Original - median')
>>> ax[3].label_outer()
>>> imgr2 = librosa.display.specshow(chroma - chroma_nlm,
...                          y_axis='chroma', x_axis='time', ax=ax[4])
>>> ax[4].label_outer()
>>> ax[4].set(title='Original - NLM')
>>> fig.colorbar(imgc, ax=ax[:3])
>>> fig.colorbar(imgr1, ax=[ax[3]])
>>> fig.colorbar(imgr2, ax=[ax[4]])
../_images/librosa-decompose-nn_filter-1.png