Caution

You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.

Source code for librosa.core.convert

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Unit conversion utilities"""
from __future__ import annotations
import re
import numpy as np
from . import notation
from ..util.exceptions import ParameterError
from ..util.decorators import vectorize
from typing import Any, Callable, Dict, Iterable, Optional, Sized, Union, overload
from .._typing import (
    _IterableLike,
    _FloatLike_co,
    _SequenceLike,
    _ScalarOrSequence,
    _IntLike_co,
)

__all__ = [
    "frames_to_samples",
    "frames_to_time",
    "samples_to_frames",
    "samples_to_time",
    "time_to_samples",
    "time_to_frames",
    "blocks_to_samples",
    "blocks_to_frames",
    "blocks_to_time",
    "note_to_hz",
    "note_to_midi",
    "midi_to_hz",
    "midi_to_note",
    "hz_to_note",
    "hz_to_midi",
    "hz_to_mel",
    "hz_to_octs",
    "hz_to_fjs",
    "mel_to_hz",
    "octs_to_hz",
    "A4_to_tuning",
    "tuning_to_A4",
    "fft_frequencies",
    "cqt_frequencies",
    "mel_frequencies",
    "tempo_frequencies",
    "fourier_tempo_frequencies",
    "A_weighting",
    "B_weighting",
    "C_weighting",
    "D_weighting",
    "Z_weighting",
    "frequency_weighting",
    "multi_frequency_weighting",
    "samples_like",
    "times_like",
    "midi_to_svara_h",
    "midi_to_svara_c",
    "note_to_svara_h",
    "note_to_svara_c",
    "hz_to_svara_h",
    "hz_to_svara_c",
]


@overload
def frames_to_samples(
    frames: _IntLike_co, *, hop_length: int = 512, n_fft: Optional[int] = None
) -> np.integer[Any]:
    ...


@overload
def frames_to_samples(
    frames: _SequenceLike[_IntLike_co],
    *,
    hop_length: int = 512,
    n_fft: Optional[int] = None,
) -> np.ndarray:
    ...


[docs]def frames_to_samples( frames: _ScalarOrSequence[_IntLike_co], *, hop_length: int = 512, n_fft: Optional[int] = None, ) -> Union[np.integer[Any], np.ndarray]: """Converts frame indices to audio sample indices. Parameters ---------- frames : number or np.ndarray [shape=(n,)] frame index or vector of frame indices hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``n_fft // 2`` to counteract windowing effects when using a non-centered STFT. Returns ------- times : number or np.ndarray time (in samples) of each given frame number:: times[i] = frames[i] * hop_length See Also -------- frames_to_time : convert frame indices to time values samples_to_frames : convert sample indices to frame indices Examples -------- >>> y, sr = librosa.load(librosa.ex('choice')) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> beat_samples = librosa.frames_to_samples(beats) """ offset = 0 if n_fft is not None: offset = int(n_fft // 2) return (np.asanyarray(frames) * hop_length + offset).astype(int)
@overload def samples_to_frames( samples: _IntLike_co, *, hop_length: int = ..., n_fft: Optional[int] = ... ) -> np.integer[Any]: ... @overload def samples_to_frames( samples: _SequenceLike[_IntLike_co], *, hop_length: int = ..., n_fft: Optional[int] = ..., ) -> np.ndarray: ... @overload def samples_to_frames( samples: _ScalarOrSequence[_IntLike_co], *, hop_length: int = ..., n_fft: Optional[int] = ..., ) -> Union[np.integer[Any], np.ndarray]: ...
[docs]def samples_to_frames( samples: _ScalarOrSequence[_IntLike_co], *, hop_length: int = 512, n_fft: Optional[int] = None, ) -> Union[np.integer[Any], np.ndarray]: """Converts sample indices into STFT frames. Examples -------- >>> # Get the frame numbers for every 256 samples >>> librosa.samples_to_frames(np.arange(0, 22050, 256)) array([ 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43]) Parameters ---------- samples : int or np.ndarray [shape=(n,)] sample index or vector of sample indices hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``- n_fft // 2`` to counteract windowing effects in STFT. .. note:: This may result in negative frame indices. Returns ------- frames : int or np.ndarray [shape=(n,), dtype=int] Frame numbers corresponding to the given times:: frames[i] = floor( samples[i] / hop_length ) See Also -------- samples_to_time : convert sample indices to time values frames_to_samples : convert frame indices to sample indices """ offset = 0 if n_fft is not None: offset = int(n_fft // 2) samples = np.asanyarray(samples) return np.asarray(np.floor((samples - offset) // hop_length), dtype=int)
@overload def frames_to_time( frames: _IntLike_co, *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> np.floating[Any]: ... @overload def frames_to_time( frames: _SequenceLike[_IntLike_co], *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> np.ndarray: ... @overload def frames_to_time( frames: _ScalarOrSequence[_IntLike_co], *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def frames_to_time( frames: _ScalarOrSequence[_IntLike_co], *, sr: float = 22050, hop_length: int = 512, n_fft: Optional[int] = None, ) -> Union[np.floating[Any], np.ndarray]: """Converts frame counts to time (seconds). Parameters ---------- frames : np.ndarray [shape=(n,)] frame index or vector of frame indices sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``n_fft // 2`` to counteract windowing effects when using a non-centered STFT. Returns ------- times : np.ndarray [shape=(n,)] time (in seconds) of each given frame number:: times[i] = frames[i] * hop_length / sr See Also -------- time_to_frames : convert time values to frame indices frames_to_samples : convert frame indices to sample indices Examples -------- >>> y, sr = librosa.load(librosa.ex('choice')) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr) >>> beat_times = librosa.frames_to_time(beats, sr=sr) """ samples = frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft) return samples_to_time(samples, sr=sr)
@overload def time_to_frames( times: _FloatLike_co, *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> np.integer[Any]: ... @overload def time_to_frames( times: _SequenceLike[_FloatLike_co], *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> np.ndarray: ... @overload def time_to_frames( times: _ScalarOrSequence[_FloatLike_co], *, sr: float = ..., hop_length: int = ..., n_fft: Optional[int] = ..., ) -> Union[np.integer[Any], np.ndarray]: ...
[docs]def time_to_frames( times: _ScalarOrSequence[_FloatLike_co], *, sr: float = 22050, hop_length: int = 512, n_fft: Optional[int] = None, ) -> Union[np.integer[Any], np.ndarray]: """Converts time stamps into STFT frames. Parameters ---------- times : np.ndarray [shape=(n,)] time (in seconds) or vector of time values sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``- n_fft // 2`` to counteract windowing effects in STFT. .. note:: This may result in negative frame indices. Returns ------- frames : np.ndarray [shape=(n,), dtype=int] Frame numbers corresponding to the given times:: frames[i] = floor( times[i] * sr / hop_length ) See Also -------- frames_to_time : convert frame indices to time values time_to_samples : convert time values to sample indices Examples -------- Get the frame numbers for every 100ms >>> librosa.time_to_frames(np.arange(0, 1, 0.1), ... sr=22050, hop_length=512) array([ 0, 4, 8, 12, 17, 21, 25, 30, 34, 38]) """ samples = time_to_samples(times, sr=sr) return samples_to_frames(samples, hop_length=hop_length, n_fft=n_fft)
@overload def time_to_samples(times: _FloatLike_co, *, sr: float = ...) -> np.integer[Any]: ... @overload def time_to_samples( times: _SequenceLike[_FloatLike_co], *, sr: float = ... ) -> np.ndarray: ... @overload def time_to_samples( times: _ScalarOrSequence[_FloatLike_co], *, sr: float = ... ) -> Union[np.integer[Any], np.ndarray]: ...
[docs]def time_to_samples( times: _ScalarOrSequence[_FloatLike_co], *, sr: float = 22050 ) -> Union[np.integer[Any], np.ndarray]: """Convert timestamps (in seconds) to sample indices. Parameters ---------- times : number or np.ndarray Time value or array of time values (in seconds) sr : number > 0 Sampling rate Returns ------- samples : int or np.ndarray [shape=times.shape, dtype=int] Sample indices corresponding to values in ``times`` See Also -------- time_to_frames : convert time values to frame indices samples_to_time : convert sample indices to time values Examples -------- >>> librosa.time_to_samples(np.arange(0, 1, 0.1), sr=22050) array([ 0, 2205, 4410, 6615, 8820, 11025, 13230, 15435, 17640, 19845]) """ return (np.asanyarray(times) * sr).astype(int)
@overload def samples_to_time(samples: _IntLike_co, *, sr: float = ...) -> np.floating[Any]: ... @overload def samples_to_time( samples: _SequenceLike[_IntLike_co], *, sr: float = ... ) -> np.ndarray: ... @overload def samples_to_time( samples: _ScalarOrSequence[_IntLike_co], *, sr: float = ... ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def samples_to_time( samples: _ScalarOrSequence[_IntLike_co], *, sr: float = 22050 ) -> Union[np.floating[Any], np.ndarray]: """Convert sample indices to time (in seconds). Parameters ---------- samples : np.ndarray Sample index or array of sample indices sr : number > 0 Sampling rate Returns ------- times : np.ndarray [shape=samples.shape] Time values corresponding to ``samples`` (in seconds) See Also -------- samples_to_frames : convert sample indices to frame indices time_to_samples : convert time values to sample indices Examples -------- Get timestamps corresponding to every 512 samples >>> librosa.samples_to_time(np.arange(0, 22050, 512)) array([ 0. , 0.023, 0.046, 0.07 , 0.093, 0.116, 0.139, 0.163, 0.186, 0.209, 0.232, 0.255, 0.279, 0.302, 0.325, 0.348, 0.372, 0.395, 0.418, 0.441, 0.464, 0.488, 0.511, 0.534, 0.557, 0.58 , 0.604, 0.627, 0.65 , 0.673, 0.697, 0.72 , 0.743, 0.766, 0.789, 0.813, 0.836, 0.859, 0.882, 0.906, 0.929, 0.952, 0.975, 0.998]) """ return np.asanyarray(samples) / float(sr)
@overload def blocks_to_frames(blocks: _IntLike_co, *, block_length: int) -> np.integer[Any]: ... @overload def blocks_to_frames( blocks: _SequenceLike[_IntLike_co], *, block_length: int ) -> np.ndarray: ... @overload def blocks_to_frames( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int ) -> Union[np.integer[Any], np.ndarray]: ...
[docs]def blocks_to_frames( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int ) -> Union[np.integer[Any], np.ndarray]: """Convert block indices to frame indices Parameters ---------- blocks : np.ndarray Block index or array of block indices block_length : int > 0 The number of frames per block Returns ------- frames : np.ndarray [shape=samples.shape, dtype=int] The index or indices of frames corresponding to the beginning of each provided block. See Also -------- blocks_to_samples blocks_to_time Examples -------- Get frame indices for each block in a stream >>> filename = librosa.ex('brahms') >>> sr = librosa.get_samplerate(filename) >>> stream = librosa.stream(filename, block_length=16, ... frame_length=2048, hop_length=512) >>> for n, y in enumerate(stream): ... n_frame = librosa.blocks_to_frames(n, block_length=16) """ return block_length * np.asanyarray(blocks)
@overload def blocks_to_samples( blocks: _IntLike_co, *, block_length: int, hop_length: int ) -> np.integer[Any]: ... @overload def blocks_to_samples( blocks: _SequenceLike[_IntLike_co], *, block_length: int, hop_length: int ) -> np.ndarray: ... @overload def blocks_to_samples( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int ) -> Union[np.integer[Any], np.ndarray]: ...
[docs]def blocks_to_samples( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int ) -> Union[np.integer[Any], np.ndarray]: """Convert block indices to sample indices Parameters ---------- blocks : np.ndarray Block index or array of block indices block_length : int > 0 The number of frames per block hop_length : int > 0 The number of samples to advance between frames Returns ------- samples : np.ndarray [shape=samples.shape, dtype=int] The index or indices of samples corresponding to the beginning of each provided block. Note that these correspond to the *first* sample index in each block, and are not frame-centered. See Also -------- blocks_to_frames blocks_to_time Examples -------- Get sample indices for each block in a stream >>> filename = librosa.ex('brahms') >>> sr = librosa.get_samplerate(filename) >>> stream = librosa.stream(filename, block_length=16, ... frame_length=2048, hop_length=512) >>> for n, y in enumerate(stream): ... n_sample = librosa.blocks_to_samples(n, block_length=16, ... hop_length=512) """ frames = blocks_to_frames(blocks, block_length=block_length) return frames_to_samples(frames, hop_length=hop_length)
@overload def blocks_to_time( blocks: _IntLike_co, *, block_length: int, hop_length: int, sr: int ) -> np.floating[Any]: ... @overload def blocks_to_time( blocks: _SequenceLike[_IntLike_co], *, block_length: int, hop_length: int, sr: int ) -> np.ndarray: ... @overload def blocks_to_time( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int, sr: int, ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def blocks_to_time( blocks: _ScalarOrSequence[_IntLike_co], *, block_length: int, hop_length: int, sr: int, ) -> Union[np.floating[Any], np.ndarray]: """Convert block indices to time (in seconds) Parameters ---------- blocks : np.ndarray Block index or array of block indices block_length : int > 0 The number of frames per block hop_length : int > 0 The number of samples to advance between frames sr : int > 0 The sampling rate (samples per second) Returns ------- times : np.ndarray [shape=samples.shape] The time index or indices (in seconds) corresponding to the beginning of each provided block. Note that these correspond to the time of the *first* sample in each block, and are not frame-centered. See Also -------- blocks_to_frames blocks_to_samples Examples -------- Get time indices for each block in a stream >>> filename = librosa.ex('brahms') >>> sr = librosa.get_samplerate(filename) >>> stream = librosa.stream(filename, block_length=16, ... frame_length=2048, hop_length=512) >>> for n, y in enumerate(stream): ... n_time = librosa.blocks_to_time(n, block_length=16, ... hop_length=512, sr=sr) """ samples = blocks_to_samples( blocks, block_length=block_length, hop_length=hop_length ) return samples_to_time(samples, sr=sr)
@overload def note_to_hz(note: str, **kwargs: Any) -> np.floating[Any]: ... @overload def note_to_hz(note: _IterableLike[str], **kwargs: Any) -> np.ndarray: ... @overload def note_to_hz( note: Union[str, _IterableLike[str], Iterable[str]], **kwargs: Any ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def note_to_hz( note: Union[str, _IterableLike[str], Iterable[str]], **kwargs: Any ) -> Union[np.floating[Any], np.ndarray]: """Convert one or more note names to frequency (Hz) Examples -------- >>> # Get the frequency of a note >>> librosa.note_to_hz('C') array([ 16.352]) >>> # Or multiple notes >>> librosa.note_to_hz(['A3', 'A4', 'A5']) array([ 220., 440., 880.]) >>> # Or notes with tuning deviations >>> librosa.note_to_hz('C2-32', round_midi=False) array([ 64.209]) Parameters ---------- note : str or iterable of str One or more note names to convert **kwargs : additional keyword arguments Additional parameters to `note_to_midi` Returns ------- frequencies : number or np.ndarray [shape=(len(note),)] Array of frequencies (in Hz) corresponding to ``note`` See Also -------- midi_to_hz note_to_midi hz_to_note """ return midi_to_hz(note_to_midi(note, **kwargs))
@overload def note_to_midi(note: str, *, round_midi: bool = ...) -> Union[float, int]: ... @overload def note_to_midi(note: _IterableLike[str], *, round_midi: bool = ...) -> np.ndarray: ... @overload def note_to_midi( note: Union[str, _IterableLike[str], Iterable[str]], *, round_midi: bool = ... ) -> Union[float, int, np.ndarray]: ...
[docs]def note_to_midi( note: Union[str, _IterableLike[str], Iterable[str]], *, round_midi: bool = True ) -> Union[float, np.ndarray]: """Convert one or more spelled notes to MIDI number(s). Notes may be spelled out with optional accidentals or octave numbers. The leading note name is case-insensitive. Sharps are indicated with ``#``, flats may be indicated with ``!`` or ``b``. Parameters ---------- note : str or iterable of str One or more note names. round_midi : bool - If ``True``, midi numbers are rounded to the nearest integer. - If ``False``, allow fractional midi numbers. Returns ------- midi : float or np.array Midi note numbers corresponding to inputs. Raises ------ ParameterError If the input is not in valid note format See Also -------- midi_to_note note_to_hz Examples -------- >>> librosa.note_to_midi('C') 12 >>> librosa.note_to_midi('C#3') 49 >>> librosa.note_to_midi('C♯3') # Using Unicode sharp 49 >>> librosa.note_to_midi('C♭3') # Using Unicode flat 47 >>> librosa.note_to_midi('f4') 65 >>> librosa.note_to_midi('Bb-1') 10 >>> librosa.note_to_midi('A!8') 116 >>> librosa.note_to_midi('G𝄪6') # Double-sharp 93 >>> librosa.note_to_midi('B𝄫6') # Double-flat 93 >>> librosa.note_to_midi('C♭𝄫5') # Triple-flats also work 69 >>> # Lists of notes also work >>> librosa.note_to_midi(['C', 'E', 'G']) array([12, 16, 19]) """ if not isinstance(note, str): return np.array([note_to_midi(n, round_midi=round_midi) for n in note]) pitch_map: Dict[str, int] = { "C": 0, "D": 2, "E": 4, "F": 5, "G": 7, "A": 9, "B": 11, } acc_map: Dict[str, int] = { "#": 1, "": 0, "b": -1, "!": -1, "♯": 1, "𝄪": 2, "♭": -1, "𝄫": -2, "♮": 0, } match = notation.NOTE_RE.match(note) if not match: raise ParameterError(f"Improper note format: {note:s}") pitch = match.group("note").upper() offset = np.sum([acc_map[o] for o in match.group("accidental")]) octave = match.group("octave") cents = match.group("cents") if not octave: octave = 0 else: octave = int(octave) if not cents: cents = 0 else: cents = int(cents) * 1e-2 note_value: float = 12 * (octave + 1) + pitch_map[pitch] + offset + cents if round_midi: return int(np.round(note_value)) else: return note_value
@overload def midi_to_note( midi: _FloatLike_co, *, octave: bool = ..., cents: bool = ..., key: str = ..., unicode: bool = ..., ) -> str: ... @overload def midi_to_note( midi: _SequenceLike[_FloatLike_co], *, octave: bool = ..., cents: bool = ..., key: str = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def midi_to_note( midi: _ScalarOrSequence[_FloatLike_co], *, octave: bool = ..., cents: bool = ..., key: str = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]@vectorize(excluded=["octave", "cents", "key", "unicode"]) def midi_to_note( midi: _ScalarOrSequence[_FloatLike_co], *, octave: bool = True, cents: bool = False, key: str = "C:maj", unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert one or more MIDI numbers to note strings. MIDI numbers will be rounded to the nearest integer. Notes will be of the format 'C0', 'C♯0', 'D0', ... Examples -------- >>> librosa.midi_to_note(0) 'C-1' >>> librosa.midi_to_note(37) 'C♯2' >>> librosa.midi_to_note(37, unicode=False) 'C#2' >>> librosa.midi_to_note(-2) 'A♯-2' >>> librosa.midi_to_note(104.7) 'A7' >>> librosa.midi_to_note(104.7, cents=True) 'A7-30' >>> librosa.midi_to_note(np.arange(12, 24))) array(['C0', 'C♯0', 'D0', 'D♯0', 'E0', 'F0', 'F♯0', 'G0', 'G♯0', 'A0', 'A♯0', 'B0'], dtype='<U3') Use a key signature to resolve enharmonic equivalences >>> librosa.midi_to_note(range(12, 24), key='F:min') array(['C0', 'D♭0', 'D0', 'E♭0', 'E0', 'F0', 'G♭0', 'G0', 'A♭0', 'A0', 'B♭0', 'B0'], dtype='<U3') Parameters ---------- midi : int or iterable of int Midi numbers to convert. octave : bool If True, include the octave number cents : bool If true, cent markers will be appended for fractional notes. Eg, ``midi_to_note(69.3, cents=True) == 'A4+03'`` key : str A key signature to use when resolving enharmonic equivalences. unicode : bool If ``True`` (default), accidentals will use Unicode notation: ♭ or ♯ If ``False``, accidentals will use ASCII-compatible notation: b or # Returns ------- notes : str or np.ndarray of str Strings describing each midi note. Raises ------ ParameterError if ``cents`` is True and ``octave`` is False See Also -------- midi_to_hz note_to_midi hz_to_note key_to_notes """ if cents and not octave: raise ParameterError("Cannot encode cents without octave information.") note_map = notation.key_to_notes(key=key, unicode=unicode) # mypy does not understand vectorization, suppress type checks note_num = int(np.round(midi)) # type: ignore note_cents = int(100 * np.around(midi - note_num, 2)) # type: ignore note = note_map[note_num % 12] if octave: note = "{:s}{:0d}".format(note, int(note_num / 12) - 1) if cents: note = f"{note:s}{note_cents:+02d}" return note
@overload def midi_to_hz(notes: _FloatLike_co) -> np.floating[Any]: ... @overload def midi_to_hz(notes: _SequenceLike[_FloatLike_co]) -> np.ndarray: ... @overload def midi_to_hz( notes: _ScalarOrSequence[_FloatLike_co], ) -> Union[np.ndarray, np.floating[Any]]: ...
[docs]def midi_to_hz( notes: _ScalarOrSequence[_FloatLike_co], ) -> Union[np.ndarray, np.floating[Any]]: """Get the frequency (Hz) of MIDI note(s) Examples -------- >>> librosa.midi_to_hz(36) 65.406 >>> librosa.midi_to_hz(np.arange(36, 48)) array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.826, 110. , 116.541, 123.471]) Parameters ---------- notes : int or np.ndarray [shape=(n,), dtype=int] midi number(s) of the note(s) Returns ------- frequency : number or np.ndarray [shape=(n,), dtype=float] frequency (frequencies) of ``notes`` in Hz See Also -------- hz_to_midi note_to_hz """ return 440.0 * (2.0 ** ((np.asanyarray(notes) - 69.0) / 12.0))
@overload def hz_to_midi(frequencies: _FloatLike_co) -> np.floating[Any]: ... @overload def hz_to_midi(frequencies: _SequenceLike[_FloatLike_co]) -> np.ndarray: ... @overload def hz_to_midi( frequencies: _ScalarOrSequence[_FloatLike_co], ) -> Union[np.ndarray, np.floating[Any]]: ...
[docs]def hz_to_midi( frequencies: _ScalarOrSequence[_FloatLike_co], ) -> Union[np.ndarray, np.floating[Any]]: """Get MIDI note number(s) for given frequencies Examples -------- >>> librosa.hz_to_midi(60) 34.506 >>> librosa.hz_to_midi([110, 220, 440]) array([ 45., 57., 69.]) Parameters ---------- frequencies : float or np.ndarray [shape=(n,), dtype=float] frequencies to convert Returns ------- note_nums : number or np.ndarray [shape=(n,), dtype=float] MIDI notes to ``frequencies`` See Also -------- midi_to_hz note_to_midi hz_to_note """ midi: np.ndarray = 12 * (np.log2(np.asanyarray(frequencies)) - np.log2(440.0)) + 69 return midi
@overload def hz_to_note(frequencies: _FloatLike_co, **kwargs: Any) -> str: ... @overload def hz_to_note(frequencies: _SequenceLike[_FloatLike_co], **kwargs: Any) -> np.ndarray: ... @overload def hz_to_note( frequencies: _ScalarOrSequence[_FloatLike_co], **kwargs: Any ) -> Union[str, np.ndarray]: ...
[docs]def hz_to_note( frequencies: _ScalarOrSequence[_FloatLike_co], **kwargs: Any ) -> Union[str, np.ndarray]: """Convert one or more frequencies (in Hz) to the nearest note names. Parameters ---------- frequencies : float or iterable of float Input frequencies, specified in Hz **kwargs : additional keyword arguments Arguments passed through to `midi_to_note` Returns ------- notes : str or np.ndarray of str ``notes[i]`` is the closest note name to ``frequency[i]`` (or ``frequency`` if the input is scalar) See Also -------- hz_to_midi midi_to_note note_to_hz Examples -------- Get a single note name for a frequency >>> librosa.hz_to_note(440.0) 'A5' Get multiple notes with cent deviation >>> librosa.hz_to_note([32, 64], cents=True) ['C1-38', 'C2-38'] Get multiple notes, but suppress octave labels >>> librosa.hz_to_note(440.0 * (2.0 ** np.linspace(0, 1, 12)), ... octave=False) ['A', 'A#', 'B', 'C', 'C#', 'D', 'E', 'F', 'F#', 'G', 'G#', 'A'] """ return midi_to_note(hz_to_midi(frequencies), **kwargs)
@overload def hz_to_mel(frequencies: _FloatLike_co, *, htk: bool = ...) -> np.floating[Any]: ... @overload def hz_to_mel( frequencies: _SequenceLike[_FloatLike_co], *, htk: bool = ... ) -> np.ndarray: ... @overload def hz_to_mel( frequencies: _ScalarOrSequence[_FloatLike_co], *, htk: bool = ... ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def hz_to_mel( frequencies: _ScalarOrSequence[_FloatLike_co], *, htk: bool = False ) -> Union[np.floating[Any], np.ndarray]: """Convert Hz to Mels Examples -------- >>> librosa.hz_to_mel(60) 0.9 >>> librosa.hz_to_mel([110, 220, 440]) array([ 1.65, 3.3 , 6.6 ]) Parameters ---------- frequencies : number or np.ndarray [shape=(n,)] , float scalar or array of frequencies htk : bool use HTK formula instead of Slaney Returns ------- mels : number or np.ndarray [shape=(n,)] input frequencies in Mels See Also -------- mel_to_hz """ frequencies = np.asanyarray(frequencies) if htk: mels: np.ndarray = 2595.0 * np.log10(1.0 + frequencies / 700.0) return mels # Fill in the linear part f_min = 0.0 f_sp = 200.0 / 3 mels = (frequencies - f_min) / f_sp # Fill in the log-scale part min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if frequencies.ndim: # If we have array data, vectorize log_t = frequencies >= min_log_hz mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep elif frequencies >= min_log_hz: # If we have scalar data, heck directly mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep return mels
@overload def mel_to_hz(mels: _FloatLike_co, *, htk: bool = ...) -> np.floating[Any]: ... @overload def mel_to_hz(mels: _SequenceLike[_FloatLike_co], *, htk: bool = ...) -> np.ndarray: ... @overload def mel_to_hz( mels: _ScalarOrSequence[_FloatLike_co], *, htk: bool = ... ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def mel_to_hz( mels: _ScalarOrSequence[_FloatLike_co], *, htk: bool = False ) -> Union[np.floating[Any], np.ndarray]: """Convert mel bin numbers to frequencies Examples -------- >>> librosa.mel_to_hz(3) 200. >>> librosa.mel_to_hz([1,2,3,4,5]) array([ 66.667, 133.333, 200. , 266.667, 333.333]) Parameters ---------- mels : np.ndarray [shape=(n,)], float mel bins to convert htk : bool use HTK formula instead of Slaney Returns ------- frequencies : np.ndarray [shape=(n,)] input mels in Hz See Also -------- hz_to_mel """ mels = np.asanyarray(mels) if htk: return 700.0 * (10.0 ** (mels / 2595.0) - 1.0) # Fill in the linear scale f_min = 0.0 f_sp = 200.0 / 3 freqs = f_min + f_sp * mels # And now the nonlinear scale min_log_hz = 1000.0 # beginning of log region (Hz) min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels) logstep = np.log(6.4) / 27.0 # step size for log region if mels.ndim: # If we have vector data, vectorize log_t = mels >= min_log_mel freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel)) elif mels >= min_log_mel: # If we have scalar data, check directly freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel)) return freqs
@overload def hz_to_octs( frequencies: _FloatLike_co, *, tuning: float = ..., bins_per_octave: int = ... ) -> np.floating[Any]: ... @overload def hz_to_octs( frequencies: _SequenceLike[_FloatLike_co], *, tuning: float = ..., bins_per_octave: int = ..., ) -> np.ndarray: ... @overload def hz_to_octs( frequencies: _ScalarOrSequence[_FloatLike_co], *, tuning: float = ..., bins_per_octave: int = ..., ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def hz_to_octs( frequencies: _ScalarOrSequence[_FloatLike_co], *, tuning: float = 0.0, bins_per_octave: int = 12, ) -> Union[np.floating[Any], np.ndarray]: """Convert frequencies (Hz) to (fractional) octave numbers. Examples -------- >>> librosa.hz_to_octs(440.0) 4. >>> librosa.hz_to_octs([32, 64, 128, 256]) array([ 0.219, 1.219, 2.219, 3.219]) Parameters ---------- frequencies : number >0 or np.ndarray [shape=(n,)] or float scalar or vector of frequencies tuning : float Tuning deviation from A440 in (fractional) bins per octave. bins_per_octave : int > 0 Number of bins per octave. Returns ------- octaves : number or np.ndarray [shape=(n,)] octave number for each frequency See Also -------- octs_to_hz """ A440 = 440.0 * 2.0 ** (tuning / bins_per_octave) octs: np.ndarray = np.log2(np.asanyarray(frequencies) / (float(A440) / 16)) return octs
@overload def octs_to_hz( octs: _FloatLike_co, *, tuning: float = ..., bins_per_octave: int = ... ) -> np.floating[Any]: ... @overload def octs_to_hz( octs: _SequenceLike[_FloatLike_co], *, tuning: float = ..., bins_per_octave: int = ..., ) -> np.ndarray: ... @overload def octs_to_hz( octs: _ScalarOrSequence[_FloatLike_co], *, tuning: float = ..., bins_per_octave: int = ..., ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def octs_to_hz( octs: _ScalarOrSequence[_FloatLike_co], *, tuning: float = 0.0, bins_per_octave: int = 12, ) -> Union[np.floating[Any], np.ndarray]: """Convert octaves numbers to frequencies. Octaves are counted relative to A. Examples -------- >>> librosa.octs_to_hz(1) 55. >>> librosa.octs_to_hz([-2, -1, 0, 1, 2]) array([ 6.875, 13.75 , 27.5 , 55. , 110. ]) Parameters ---------- octs : np.ndarray [shape=(n,)] or float octave number for each frequency tuning : float Tuning deviation from A440 in (fractional) bins per octave. bins_per_octave : int > 0 Number of bins per octave. Returns ------- frequencies : number or np.ndarray [shape=(n,)] scalar or vector of frequencies See Also -------- hz_to_octs """ A440 = 440.0 * 2.0 ** (tuning / bins_per_octave) return (float(A440) / 16) * (2.0 ** np.asanyarray(octs))
@overload def A4_to_tuning(A4: _FloatLike_co, *, bins_per_octave: int = ...) -> np.floating[Any]: ... @overload def A4_to_tuning( A4: _SequenceLike[_FloatLike_co], *, bins_per_octave: int = ... ) -> np.ndarray: ... @overload def A4_to_tuning( A4: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = ... ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def A4_to_tuning( A4: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = 12 ) -> Union[np.floating[Any], np.ndarray]: """Convert a reference pitch frequency (e.g., ``A4=435``) to a tuning estimation, in fractions of a bin per octave. This is useful for determining the tuning deviation relative to A440 of a given frequency, assuming equal temperament. By default, 12 bins per octave are used. This method is the inverse of `tuning_to_A4`. Examples -------- The base case of this method in which A440 yields 0 tuning offset from itself. >>> librosa.A4_to_tuning(440.0) 0. Convert a non-A440 frequency to a tuning offset relative to A440 using the default of 12 bins per octave. >>> librosa.A4_to_tuning(432.0) -0.318 Convert two reference pitch frequencies to corresponding tuning estimations at once, but using 24 bins per octave. >>> librosa.A4_to_tuning([440.0, 444.0], bins_per_octave=24) array([ 0., 0.313 ]) Parameters ---------- A4 : float or np.ndarray [shape=(n,), dtype=float] Reference frequency(s) corresponding to A4. bins_per_octave : int > 0 Number of bins per octave. Returns ------- tuning : float or np.ndarray [shape=(n,), dtype=float] Tuning deviation from A440 in (fractional) bins per octave. See Also -------- tuning_to_A4 """ tuning: np.ndarray = bins_per_octave * (np.log2(np.asanyarray(A4)) - np.log2(440.0)) return tuning
@overload def tuning_to_A4( tuning: _FloatLike_co, *, bins_per_octave: int = ... ) -> np.floating[Any]: ... @overload def tuning_to_A4( tuning: _SequenceLike[_FloatLike_co], *, bins_per_octave: int = ... ) -> np.ndarray: ... @overload def tuning_to_A4( tuning: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = ... ) -> Union[np.floating[Any], np.ndarray]: ...
[docs]def tuning_to_A4( tuning: _ScalarOrSequence[_FloatLike_co], *, bins_per_octave: int = 12 ) -> Union[np.floating[Any], np.ndarray]: """Convert a tuning deviation (from 0) in fractions of a bin per octave (e.g., ``tuning=-0.1``) to a reference pitch frequency relative to A440. This is useful if you are working in a non-A440 tuning system to determine the reference pitch frequency given a tuning offset and assuming equal temperament. By default, 12 bins per octave are used. This method is the inverse of `A4_to_tuning`. Examples -------- The base case of this method in which a tuning deviation of 0 gets us to our A440 reference pitch. >>> librosa.tuning_to_A4(0.0) 440. Convert a nonzero tuning offset to its reference pitch frequency. >>> librosa.tuning_to_A4(-0.318) 431.992 Convert 3 tuning deviations at once to respective reference pitch frequencies, using 36 bins per octave. >>> librosa.tuning_to_A4([0.1, 0.2, -0.1], bins_per_octave=36) array([ 440.848, 441.698 439.154]) Parameters ---------- tuning : float or np.ndarray [shape=(n,), dtype=float] Tuning deviation from A440 in fractional bins per octave. bins_per_octave : int > 0 Number of bins per octave. Returns ------- A4 : float or np.ndarray [shape=(n,), dtype=float] Reference frequency corresponding to A4. See Also -------- A4_to_tuning """ return 440.0 * 2.0 ** (np.asanyarray(tuning) / bins_per_octave)
[docs]def fft_frequencies(*, sr: float = 22050, n_fft: int = 2048) -> np.ndarray: """Alternative implementation of `np.fft.fftfreq` Parameters ---------- sr : number > 0 [scalar] Audio sampling rate n_fft : int > 0 [scalar] FFT window size Returns ------- freqs : np.ndarray [shape=(1 + n_fft/2,)] Frequencies ``(0, sr/n_fft, 2*sr/n_fft, ..., sr/2)`` Examples -------- >>> librosa.fft_frequencies(sr=22050, n_fft=16) array([ 0. , 1378.125, 2756.25 , 4134.375, 5512.5 , 6890.625, 8268.75 , 9646.875, 11025. ]) """ return np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
[docs]def cqt_frequencies( n_bins: int, *, fmin: float, bins_per_octave: int = 12, tuning: float = 0.0 ) -> np.ndarray: """Compute the center frequencies of Constant-Q bins. Examples -------- >>> # Get the CQT frequencies for 24 notes, starting at C2 >>> librosa.cqt_frequencies(24, fmin=librosa.note_to_hz('C2')) array([ 65.406, 69.296, 73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.826, 110. , 116.541, 123.471, 130.813, 138.591, 146.832, 155.563, 164.814, 174.614, 184.997, 195.998, 207.652, 220. , 233.082, 246.942]) Parameters ---------- n_bins : int > 0 [scalar] Number of constant-Q bins fmin : float > 0 [scalar] Minimum frequency bins_per_octave : int > 0 [scalar] Number of bins per octave tuning : float Deviation from A440 tuning in fractional bins Returns ------- frequencies : np.ndarray [shape=(n_bins,)] Center frequency for each CQT bin """ correction: float = 2.0 ** (float(tuning) / bins_per_octave) frequencies: np.ndarray = 2.0 ** ( np.arange(0, n_bins, dtype=float) / bins_per_octave ) return correction * fmin * frequencies
[docs]def mel_frequencies( n_mels: int = 128, *, fmin: float = 0.0, fmax: float = 11025.0, htk: bool = False ) -> np.ndarray: """Compute an array of acoustic frequencies tuned to the mel scale. The mel scale is a quasi-logarithmic function of acoustic frequency designed such that perceptually similar pitch intervals (e.g. octaves) appear equal in width over the full hearing range. Because the definition of the mel scale is conditioned by a finite number of subjective psychoaoustical experiments, several implementations coexist in the audio signal processing literature [#]_. By default, librosa replicates the behavior of the well-established MATLAB Auditory Toolbox of Slaney [#]_. According to this default implementation, the conversion from Hertz to mel is linear below 1 kHz and logarithmic above 1 kHz. Another available implementation replicates the Hidden Markov Toolkit [#]_ (HTK) according to the following formula:: mel = 2595.0 * np.log10(1.0 + f / 700.0). The choice of implementation is determined by the ``htk`` keyword argument: setting ``htk=False`` leads to the Auditory toolbox implementation, whereas setting it ``htk=True`` leads to the HTK implementation. .. [#] Umesh, S., Cohen, L., & Nelson, D. Fitting the mel scale. In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 217-220, 1998. .. [#] Slaney, M. Auditory Toolbox: A MATLAB Toolbox for Auditory Modeling Work. Technical Report, version 2, Interval Research Corporation, 1998. .. [#] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. The HTK book, version 3.4. Cambridge University, March 2009. See Also -------- hz_to_mel mel_to_hz librosa.feature.melspectrogram librosa.feature.mfcc Parameters ---------- n_mels : int > 0 [scalar] Number of mel bins. fmin : float >= 0 [scalar] Minimum frequency (Hz). fmax : float >= 0 [scalar] Maximum frequency (Hz). htk : bool If True, use HTK formula to convert Hz to mel. Otherwise (False), use Slaney's Auditory Toolbox. Returns ------- bin_frequencies : ndarray [shape=(n_mels,)] Vector of ``n_mels`` frequencies in Hz which are uniformly spaced on the Mel axis. Examples -------- >>> librosa.mel_frequencies(n_mels=40) array([ 0. , 85.317, 170.635, 255.952, 341.269, 426.586, 511.904, 597.221, 682.538, 767.855, 853.173, 938.49 , 1024.856, 1119.114, 1222.042, 1334.436, 1457.167, 1591.187, 1737.532, 1897.337, 2071.84 , 2262.393, 2470.47 , 2697.686, 2945.799, 3216.731, 3512.582, 3835.643, 4188.417, 4573.636, 4994.285, 5453.621, 5955.205, 6502.92 , 7101.009, 7754.107, 8467.272, 9246.028, 10096.408, 11025. ]) """ # 'Center freqs' of mel bands - uniformly spaced between limits min_mel = hz_to_mel(fmin, htk=htk) max_mel = hz_to_mel(fmax, htk=htk) mels = np.linspace(min_mel, max_mel, n_mels) hz: np.ndarray = mel_to_hz(mels, htk=htk) return hz
[docs]def tempo_frequencies( n_bins: int, *, hop_length: int = 512, sr: float = 22050 ) -> np.ndarray: """Compute the frequencies (in beats per minute) corresponding to an onset auto-correlation or tempogram matrix. Parameters ---------- n_bins : int > 0 The number of lag bins hop_length : int > 0 The number of samples between each bin sr : number > 0 The audio sampling rate Returns ------- bin_frequencies : ndarray [shape=(n_bins,)] vector of bin frequencies measured in BPM. .. note:: ``bin_frequencies[0] = +np.inf`` corresponds to 0-lag Examples -------- Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram >>> librosa.tempo_frequencies(384) array([ inf, 2583.984, 1291.992, ..., 6.782, 6.764, 6.747]) """ bin_frequencies = np.zeros(int(n_bins), dtype=np.float64) bin_frequencies[0] = np.inf bin_frequencies[1:] = 60.0 * sr / (hop_length * np.arange(1.0, n_bins)) return bin_frequencies
[docs]def fourier_tempo_frequencies( *, sr: float = 22050, win_length: int = 384, hop_length: int = 512 ) -> np.ndarray: """Compute the frequencies (in beats per minute) corresponding to a Fourier tempogram matrix. Parameters ---------- sr : number > 0 The audio sampling rate win_length : int > 0 The number of frames per analysis window hop_length : int > 0 The number of samples between each bin Returns ------- bin_frequencies : ndarray [shape=(win_length // 2 + 1 ,)] vector of bin frequencies measured in BPM. Examples -------- Get the tempo frequencies corresponding to a 384-bin (8-second) tempogram >>> librosa.fourier_tempo_frequencies(win_length=384) array([ 0. , 0.117, 0.234, ..., 22.266, 22.383, 22.5 ]) """ # sr / hop_length gets the frame rate # multiplying by 60 turns frames / sec into frames / minute return fft_frequencies(sr=sr * 60 / float(hop_length), n_fft=win_length)
# A-weighting should be capitalized: suppress the naming warning @overload def A_weighting( frequencies: _FloatLike_co, *, min_db: Optional[float] = ... ) -> np.floating[Any]: # pylint: disable=invalid-name ... @overload def A_weighting( frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ... ) -> np.ndarray: # pylint: disable=invalid-name ... @overload def A_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ... ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name ...
[docs]def A_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0 ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name """Compute the A-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- A_weighting : scalar or np.ndarray [shape=(n,)] ``A_weighting[i]`` is the A-weighting of ``frequencies[i]`` See Also -------- perceptual_weighting frequency_weighting multi_frequency_weighting B_weighting C_weighting D_weighting Examples -------- Get the A-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weights = librosa.A_weighting(freqs) >>> fig, ax = plt.subplots() >>> ax.plot(freqs, weights) >>> ax.set(xlabel='Frequency (Hz)', ... ylabel='Weighting (log10)', ... title='A-Weighting of CQT frequencies') """ f_sq = np.asanyarray(frequencies) ** 2.0 const = np.array([12194.217, 20.598997, 107.65265, 737.86223]) ** 2.0 weights: np.ndarray = 2.0 + 20.0 * ( np.log10(const[0]) + 2 * np.log10(f_sq) - np.log10(f_sq + const[0]) - np.log10(f_sq + const[1]) - 0.5 * np.log10(f_sq + const[2]) - 0.5 * np.log10(f_sq + const[3]) ) if min_db is None: return weights else: return np.maximum(min_db, weights)
@overload def B_weighting( frequencies: _FloatLike_co, *, min_db: Optional[float] = ... ) -> np.floating[Any]: # pylint: disable=invalid-name ... @overload def B_weighting( frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ... ) -> np.ndarray: # pylint: disable=invalid-name ... @overload def B_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ... ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name ...
[docs]def B_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0 ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name """Compute the B-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- B_weighting : scalar or np.ndarray [shape=(n,)] ``B_weighting[i]`` is the B-weighting of ``frequencies[i]`` See Also -------- perceptual_weighting frequency_weighting multi_frequency_weighting A_weighting C_weighting D_weighting Examples -------- Get the B-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weights = librosa.B_weighting(freqs) >>> fig, ax = plt.subplots() >>> ax.plot(freqs, weights) >>> ax.set(xlabel='Frequency (Hz)', ... ylabel='Weighting (log10)', ... title='B-Weighting of CQT frequencies') """ f_sq = np.asanyarray(frequencies) ** 2.0 const = np.array([12194.217, 20.598997, 158.48932]) ** 2.0 weights: np.ndarray = 0.17 + 20.0 * ( np.log10(const[0]) + 1.5 * np.log10(f_sq) - np.log10(f_sq + const[0]) - np.log10(f_sq + const[1]) - 0.5 * np.log10(f_sq + const[2]) ) return weights if min_db is None else np.maximum(min_db, weights)
@overload def C_weighting( frequencies: _FloatLike_co, *, min_db: Optional[float] = ... ) -> np.floating[Any]: # pylint: disable=invalid-name ... @overload def C_weighting( frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ... ) -> np.ndarray: # pylint: disable=invalid-name ... @overload def C_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ... ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name ...
[docs]def C_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0 ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name """Compute the C-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- C_weighting : scalar or np.ndarray [shape=(n,)] ``C_weighting[i]`` is the C-weighting of ``frequencies[i]`` See Also -------- perceptual_weighting frequency_weighting multi_frequency_weighting A_weighting B_weighting D_weighting Examples -------- Get the C-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weights = librosa.C_weighting(freqs) >>> fig, ax = plt.subplots() >>> ax.plot(freqs, weights) >>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)', ... title='C-Weighting of CQT frequencies') """ f_sq = np.asanyarray(frequencies) ** 2.0 const = np.array([12194.217, 20.598997]) ** 2.0 weights: np.ndarray = 0.062 + 20.0 * ( np.log10(const[0]) + np.log10(f_sq) - np.log10(f_sq + const[0]) - np.log10(f_sq + const[1]) ) return weights if min_db is None else np.maximum(min_db, weights)
@overload def D_weighting( frequencies: _FloatLike_co, *, min_db: Optional[float] = ... ) -> np.floating[Any]: # pylint: disable=invalid-name ... @overload def D_weighting( frequencies: _SequenceLike[_FloatLike_co], *, min_db: Optional[float] = ... ) -> np.ndarray: # pylint: disable=invalid-name ... @overload def D_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = ... ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name ...
[docs]def D_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, min_db: Optional[float] = -80.0 ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name """Compute the D-weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) min_db : float [scalar] or None Clip weights below this threshold. If `None`, no clipping is performed. Returns ------- D_weighting : scalar or np.ndarray [shape=(n,)] ``D_weighting[i]`` is the D-weighting of ``frequencies[i]`` See Also -------- perceptual_weighting frequency_weighting multi_frequency_weighting A_weighting B_weighting C_weighting Examples -------- Get the D-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weights = librosa.D_weighting(freqs) >>> fig, ax = plt.subplots() >>> ax.plot(freqs, weights) >>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)', ... title='D-Weighting of CQT frequencies') """ f_sq = np.asanyarray(frequencies) ** 2.0 const = np.array([8.3046305e-3, 1018.7, 1039.6, 3136.5, 3424, 282.7, 1160]) ** 2.0 weights: np.ndarray = 20.0 * ( 0.5 * np.log10(f_sq) - np.log10(const[0]) + 0.5 * ( +np.log10((const[1] - f_sq) ** 2 + const[2] * f_sq) - np.log10((const[3] - f_sq) ** 2 + const[4] * f_sq) - np.log10(const[5] + f_sq) - np.log10(const[6] + f_sq) ) ) if min_db is None: return weights else: return np.maximum(min_db, weights)
def Z_weighting( frequencies: Sized, *, min_db: Optional[float] = None ) -> np.ndarray: # pylint: disable=invalid-name weights = np.zeros(len(frequencies)) return weights if min_db is None else np.maximum(min_db, weights) WEIGHTING_FUNCTIONS: Dict[ Optional[str], Callable[..., Union[np.floating[Any], np.ndarray]] ] = { "A": A_weighting, "B": B_weighting, "C": C_weighting, "D": D_weighting, "Z": Z_weighting, None: Z_weighting, } @overload def frequency_weighting( frequencies: _FloatLike_co, *, kind: str = ..., **kwargs: Any ) -> np.floating[Any]: # pylint: disable=invalid-name ... @overload def frequency_weighting( frequencies: _SequenceLike[_FloatLike_co], *, kind: str = ..., **kwargs: Any ) -> np.ndarray: # pylint: disable=invalid-name ... @overload def frequency_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, kind: str = ..., **kwargs: Any ) -> Union[np.floating[Any], np.ndarray]: # pylint: disable=invalid-name ...
[docs]def frequency_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, kind: str = "A", **kwargs: Any ) -> Union[np.floating[Any], np.ndarray]: """Compute the weighting of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) kind : str in The weighting kind. e.g. `'A'`, `'B'`, `'C'`, `'D'`, `'Z'` **kwargs Additional keyword arguments to A_weighting, B_weighting, etc. Returns ------- weighting : scalar or np.ndarray [shape=(n,)] ``weighting[i]`` is the weighting of ``frequencies[i]`` See Also -------- perceptual_weighting multi_frequency_weighting A_weighting B_weighting C_weighting D_weighting Examples -------- Get the A-weighting for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weights = librosa.frequency_weighting(freqs, kind='A') >>> fig, ax = plt.subplots() >>> ax.plot(freqs, weights) >>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)', ... title='A-Weighting of CQT frequencies') """ if isinstance(kind, str): kind = kind.upper() return WEIGHTING_FUNCTIONS[kind](frequencies, **kwargs)
[docs]def multi_frequency_weighting( frequencies: _ScalarOrSequence[_FloatLike_co], *, kinds: Iterable[str] = "ZAC", **kwargs: Any, ) -> np.ndarray: """Compute multiple weightings of a set of frequencies. Parameters ---------- frequencies : scalar or np.ndarray [shape=(n,)] One or more frequencies (in Hz) kinds : list or tuple or str An iterable of weighting kinds. e.g. `('Z', 'B')`, `'ZAD'`, `'C'` **kwargs : keywords to pass to the weighting function. Returns ------- weighting : scalar or np.ndarray [shape=(len(kinds), n)] ``weighting[i, j]`` is the weighting of ``frequencies[j]`` using the curve determined by ``kinds[i]``. See Also -------- perceptual_weighting frequency_weighting A_weighting B_weighting C_weighting D_weighting Examples -------- Get the A, B, C, D, and Z weightings for CQT frequencies >>> import matplotlib.pyplot as plt >>> freqs = librosa.cqt_frequencies(n_bins=108, fmin=librosa.note_to_hz('C1')) >>> weightings = 'ABCDZ' >>> weights = librosa.multi_frequency_weighting(freqs, kinds=weightings) >>> fig, ax = plt.subplots() >>> for label, w in zip(weightings, weights): ... ax.plot(freqs, w, label=label) >>> ax.set(xlabel='Frequency (Hz)', ylabel='Weighting (log10)', ... title='Weightings of CQT frequencies') >>> ax.legend() """ return np.stack( [frequency_weighting(frequencies, kind=k, **kwargs) for k in kinds], axis=0 )
[docs]def times_like( X: Union[np.ndarray, float], *, sr: float = 22050, hop_length: int = 512, n_fft: Optional[int] = None, axis: int = -1, ) -> np.ndarray: """Return an array of time values to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. sr : number > 0 [scalar] audio sampling rate hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``n_fft // 2`` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of X. By default, the last axis (-1) is taken. Returns ------- times : np.ndarray [shape=(n,)] ndarray of times (in seconds) corresponding to each frame of X. See Also -------- samples_like : Return an array of sample indices to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> D = librosa.stft(y) >>> times = librosa.times_like(D) >>> times array([0. , 0.023, ..., 5.294, 5.317]) Provide a scalar input: >>> n_frames = 2647 >>> times = librosa.times_like(n_frames) >>> times array([ 0.00000000e+00, 2.32199546e-02, 4.64399093e-02, ..., 6.13935601e+01, 6.14167800e+01, 6.14400000e+01]) """ samples = samples_like(X, hop_length=hop_length, n_fft=n_fft, axis=axis) time: np.ndarray = samples_to_time(samples, sr=sr) return time
[docs]def samples_like( X: Union[np.ndarray, float], *, hop_length: int = 512, n_fft: Optional[int] = None, axis: int = -1, ) -> np.ndarray: """Return an array of sample indices to match the time axis from a feature matrix. Parameters ---------- X : np.ndarray or scalar - If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram. - If scalar, X represents the number of frames. hop_length : int > 0 [scalar] number of samples between successive frames n_fft : None or int > 0 [scalar] Optional: length of the FFT window. If given, time conversion will include an offset of ``n_fft // 2`` to counteract windowing effects when using a non-centered STFT. axis : int [scalar] The axis representing the time axis of ``X``. By default, the last axis (-1) is taken. Returns ------- samples : np.ndarray [shape=(n,)] ndarray of sample indices corresponding to each frame of ``X``. See Also -------- times_like : Return an array of time values to match the time axis from a feature matrix. Examples -------- Provide a feature matrix input: >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> X = librosa.stft(y) >>> samples = librosa.samples_like(X) >>> samples array([ 0, 512, ..., 116736, 117248]) Provide a scalar input: >>> n_frames = 2647 >>> samples = librosa.samples_like(n_frames) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752]) """ # suppress type checks because mypy does not understand isscalar if np.isscalar(X): frames = np.arange(X) # type: ignore else: frames = np.arange(X.shape[axis]) # type: ignore return frames_to_samples(frames, hop_length=hop_length, n_fft=n_fft)
@overload def midi_to_svara_h( midi: _FloatLike_co, *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> str: ... @overload def midi_to_svara_h( midi: np.ndarray, *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def midi_to_svara_h( midi: Union[_FloatLike_co, np.ndarray], *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]@vectorize(excluded=["Sa", "abbr", "octave", "unicode"]) def midi_to_svara_h( midi: Union[_FloatLike_co, np.ndarray], *, Sa: _FloatLike_co, abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert MIDI numbers to Hindustani svara Parameters ---------- midi : numeric or np.ndarray The MIDI number or numbers to convert Sa : number > 0 MIDI number of the reference Sa. abbr : bool If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...) If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information. If `False`, use low-order ASCII (' and ,) for octave decorations. This only takes effect if `octave=True`. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given MIDI number(s) See Also -------- hz_to_svara_h note_to_svara_h midi_to_svara_c midi_to_note Examples -------- Convert a single midi number: >>> librosa.midi_to_svara_h(65, Sa=60) 'm' The first three svara with Sa at midi number 60: >>> librosa.midi_to_svara_h([60, 61, 62], Sa=60) array(['S', 'r', 'R'], dtype='<U1') With Sa=67, midi 60-62 are in the octave below: >>> librosa.midi_to_svara_h([60, 61, 62], Sa=67) array(['ṃ', 'Ṃ', 'P̣'], dtype='<U2') Or without unicode decoration: >>> librosa.midi_to_svara_h([60, 61, 62], Sa=67, unicode=False) array(['m,', 'M,', 'P,'], dtype='<U2') Or going up an octave, with Sa=60, and using unabbreviated notes >>> librosa.midi_to_svara_h([72, 73, 74], Sa=60, abbr=False) array(['Ṡa', 'ṙe', 'Ṙe'], dtype='<U3') """ SVARA_MAP = [ "Sa", "re", "Re", "ga", "Ga", "ma", "Ma", "Pa", "dha", "Dha", "ni", "Ni", ] SVARA_MAP_SHORT = list(s[0] for s in SVARA_MAP) # mypy does not understand vectorization svara_num = int(np.round(midi - Sa)) # type: ignore if abbr: svara = SVARA_MAP_SHORT[svara_num % 12] else: svara = SVARA_MAP[svara_num % 12] if octave: if 24 > svara_num >= 12: if unicode: svara = svara[0] + "\u0307" + svara[1:] else: svara += "'" elif -12 <= svara_num < 0: if unicode: svara = svara[0] + "\u0323" + svara[1:] else: svara += "," return svara
@overload def hz_to_svara_h( frequencies: _FloatLike_co, *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> str: ... @overload def hz_to_svara_h( frequencies: _SequenceLike[_FloatLike_co], *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def hz_to_svara_h( frequencies: _ScalarOrSequence[_FloatLike_co], *, Sa: _FloatLike_co, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]def hz_to_svara_h( frequencies: _ScalarOrSequence[_FloatLike_co], *, Sa: _FloatLike_co, abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert frequencies (in Hz) to Hindustani svara Note that this conversion assumes 12-tone equal temperament. Parameters ---------- frequencies : positive number or np.ndarray The frequencies (in Hz) to convert Sa : positive number Frequency (in Hz) of the reference Sa. abbr : bool If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...) If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information. If `False`, use low-order ASCII (' and ,) for octave decorations. This only takes effect if `octave=True`. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given frequency/frequencies See Also -------- midi_to_svara_h note_to_svara_h hz_to_svara_c hz_to_note Examples -------- Convert Sa in three octaves: >>> librosa.hz_to_svara_h([261/2, 261, 261*2], Sa=261) ['Ṣ', 'S', 'Ṡ'] Convert one octave worth of frequencies with full names: >>> freqs = librosa.cqt_frequencies(n_bins=12, fmin=261) >>> librosa.hz_to_svara_h(freqs, Sa=freqs[0], abbr=False) ['Sa', 're', 'Re', 'ga', 'Ga', 'ma', 'Ma', 'Pa', 'dha', 'Dha', 'ni', 'Ni'] """ midis = hz_to_midi(frequencies) return midi_to_svara_h( midis, Sa=hz_to_midi(Sa), abbr=abbr, octave=octave, unicode=unicode )
@overload def note_to_svara_h( notes: str, *, Sa: str, abbr: bool = ..., octave: bool = ..., unicode: bool = ... ) -> str: ... @overload def note_to_svara_h( notes: _IterableLike[str], *, Sa: str, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def note_to_svara_h( notes: Union[str, _IterableLike[str]], *, Sa: str, abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]def note_to_svara_h( notes: Union[str, _IterableLike[str]], *, Sa: str, abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert western notes to Hindustani svara Note that this conversion assumes 12-tone equal temperament. Parameters ---------- notes : str or iterable of str Notes to convert (e.g., `'C#'` or `['C4', 'Db4', 'D4']` Sa : str Note corresponding to Sa (e.g., `'C'` or `'C5'`). If no octave information is provided, it will default to octave 0 (``C0`` ~= 16 Hz) abbr : bool If `True` (default) return abbreviated names ('S', 'r', 'R', 'g', 'G', ...) If `False`, return long-form names ('Sa', 're', 'Re', 'ga', 'Ga', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information. If `False`, use low-order ASCII (' and ,) for octave decorations. This only takes effect if `octave=True`. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given notes See Also -------- midi_to_svara_h hz_to_svara_h note_to_svara_c note_to_midi note_to_hz Examples -------- >>> librosa.note_to_svara_h(['C4', 'G4', 'C5', 'G5'], Sa='C5') ['Ṣ', 'P̣', 'S', 'P'] """ midis = note_to_midi(notes, round_midi=False) return midi_to_svara_h( midis, Sa=note_to_midi(Sa), abbr=abbr, octave=octave, unicode=unicode )
@overload def midi_to_svara_c( midi: _FloatLike_co, *, Sa: _FloatLike_co, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> str: ... @overload def midi_to_svara_c( midi: np.ndarray, *, Sa: _FloatLike_co, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def midi_to_svara_c( midi: Union[float, np.ndarray], *, Sa: _FloatLike_co, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]@vectorize(excluded=["Sa", "mela", "abbr", "octave", "unicode"]) # type: ignore def midi_to_svara_c( midi: Union[float, np.ndarray], *, Sa: _FloatLike_co, mela: Union[int, str], abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert MIDI numbers to Carnatic svara within a given melakarta raga Parameters ---------- midi : numeric The MIDI numbers to convert Sa : number > 0 MIDI number of the reference Sa. Default: 60 (261.6 Hz, `C4`) mela : int or str The name or index of the melakarta raga abbr : bool If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...) If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information and subscript numbers. If `False`, use low-order ASCII (' and ,) for octave decorations. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given MIDI number(s) See Also -------- hz_to_svara_c note_to_svara_c mela_to_degrees mela_to_svara list_mela """ svara_num = int(np.round(midi - Sa)) svara_map = notation.mela_to_svara(mela, abbr=abbr, unicode=unicode) svara = svara_map[svara_num % 12] if octave: if 24 > svara_num >= 12: if unicode: svara = svara[0] + "\u0307" + svara[1:] else: svara += "'" elif -12 <= svara_num < 0: if unicode: svara = svara[0] + "\u0323" + svara[1:] else: svara += "," return svara
@overload def hz_to_svara_c( frequencies: float, *, Sa: float, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> str: ... @overload def hz_to_svara_c( frequencies: np.ndarray, *, Sa: float, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def hz_to_svara_c( frequencies: Union[float, np.ndarray], *, Sa: float, mela: Union[int, str], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]def hz_to_svara_c( frequencies: Union[float, np.ndarray], *, Sa: float, mela: Union[int, str], abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert frequencies (in Hz) to Carnatic svara Note that this conversion assumes 12-tone equal temperament. Parameters ---------- frequencies : positive number or np.ndarray The frequencies (in Hz) to convert Sa : positive number Frequency (in Hz) of the reference Sa. mela : int [1, 72] or string The melakarta raga to use. abbr : bool If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...) If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information. If `False`, use low-order ASCII (' and ,) for octave decorations. This only takes effect if `octave=True`. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given frequency/frequencies See Also -------- note_to_svara_c midi_to_svara_c hz_to_svara_h hz_to_note list_mela Examples -------- Convert Sa in three octaves: >>> librosa.hz_to_svara_c([261/2, 261, 261*2], Sa=261, mela='kanakangi') ['Ṣ', 'S', 'Ṡ'] Convert one octave worth of frequencies using melakarta #36: >>> freqs = librosa.cqt_frequencies(n_bins=12, fmin=261) >>> librosa.hz_to_svara_c(freqs, Sa=freqs[0], mela=36) ['S', 'R₁', 'R₂', 'R₃', 'G₃', 'M₁', 'M₂', 'P', 'D₁', 'D₂', 'D₃', 'N₃'] """ midis = hz_to_midi(frequencies) return midi_to_svara_c( midis, Sa=hz_to_midi(Sa), mela=mela, abbr=abbr, octave=octave, unicode=unicode )
@overload def note_to_svara_c( notes: str, *, Sa: str, mela: Union[str, int], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> str: ... @overload def note_to_svara_c( notes: _IterableLike[str], *, Sa: str, mela: Union[str, int], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> np.ndarray: ... @overload def note_to_svara_c( notes: Union[str, _IterableLike[str]], *, Sa: str, mela: Union[str, int], abbr: bool = ..., octave: bool = ..., unicode: bool = ..., ) -> Union[str, np.ndarray]: ...
[docs]def note_to_svara_c( notes: Union[str, _IterableLike[str]], *, Sa: str, mela: Union[str, int], abbr: bool = True, octave: bool = True, unicode: bool = True, ) -> Union[str, np.ndarray]: """Convert western notes to Carnatic svara Note that this conversion assumes 12-tone equal temperament. Parameters ---------- notes : str or iterable of str Notes to convert (e.g., `'C#'` or `['C4', 'Db4', 'D4']` Sa : str Note corresponding to Sa (e.g., `'C'` or `'C5'`). If no octave information is provided, it will default to octave 0 (``C0`` ~= 16 Hz) mela : str or int [1, 72] Melakarta raga name or index abbr : bool If `True` (default) return abbreviated names ('S', 'R1', 'R2', 'G1', 'G2', ...) If `False`, return long-form names ('Sa', 'Ri1', 'Ri2', 'Ga1', 'Ga2', ...) octave : bool If `True`, decorate svara in neighboring octaves with over- or under-dots. If `False`, ignore octave height information. unicode : bool If `True`, use unicode symbols to decorate octave information. If `False`, use low-order ASCII (' and ,) for octave decorations. This only takes effect if `octave=True`. Returns ------- svara : str or np.ndarray of str The svara corresponding to the given notes See Also -------- midi_to_svara_c hz_to_svara_c note_to_svara_h note_to_midi note_to_hz list_mela Examples -------- >>> librosa.note_to_svara_h(['C4', 'G4', 'C5', 'D5', 'G5'], Sa='C5', mela=1) ['Ṣ', 'P̣', 'S', 'G₁', 'P'] """ midis = note_to_midi(notes, round_midi=False) return midi_to_svara_c( midis, Sa=note_to_midi(Sa), mela=mela, abbr=abbr, octave=octave, unicode=unicode )
@overload def hz_to_fjs( frequencies: _FloatLike_co, *, fmin: Optional[float] = ..., unison: Optional[str] = ..., unicode: bool = ..., ) -> str: ... @overload def hz_to_fjs( frequencies: _SequenceLike[_FloatLike_co], *, fmin: Optional[float] = ..., unison: Optional[str] = ..., unicode: bool = ..., ) -> np.ndarray: ...
[docs]def hz_to_fjs( frequencies: _ScalarOrSequence[_FloatLike_co], *, fmin: Optional[float] = None, unison: Optional[str] = None, unicode: bool = False, ) -> Union[str, np.ndarray]: """Convert one or more frequencies (in Hz) from a just intonation scale to notes in FJS notation. Parameters ---------- frequencies : float or iterable of float Input frequencies, specified in Hz fmin : float (optional) The minimum frequency, corresponding to a unison note. If not provided, it will be inferred as `min(frequencies)` unison : str (optional) The name of the unison note. If not provided, it will be inferred as the scientific pitch notation name of `fmin`, that is, `hz_to_note(fmin)` unicode : bool If `True`, then unicode symbols are used for accidentals. If `False`, then low-order ASCII symbols are used for accidentals. Returns ------- notes : str or np.ndarray(dtype=str) ``notes[i]`` is the closest note name to ``frequency[i]`` (or ``frequency`` if the input is scalar) See Also -------- hz_to_note interval_to_fjs Examples -------- Get a single note name for a frequency, relative to A=55 Hz >>> librosa.hz_to_fjs(66, fmin=55, unicode=True) 'C₅' Get notation for a 5-limit frequency set starting at A=55 >>> freqs = librosa.interval_frequencies(24, intervals="ji5", fmin=55) >>> freqs array([ 55. , 58.667, 61.875, 66. , 68.75 , 73.333, 77.344, 82.5 , 88. , 91.667, 99. , 103.125, 110. , 117.333, 123.75 , 132. , 137.5 , 146.667, 154.687, 165. , 176. , 183.333, 198. , 206.25 ]) >>> librosa.hz_to_fjs(freqs, unicode=True) array(['A', 'B♭₅', 'B', 'C₅', 'C♯⁵', 'D', 'D♯⁵', 'E', 'F₅', 'F♯⁵', 'G₅', 'G♯⁵', 'A', 'B♭₅', 'B', 'C₅', 'C♯⁵', 'D', 'D♯⁵', 'E', 'F₅', 'F♯⁵', 'G₅', 'G♯⁵'], dtype='<U3') """ if fmin is None: # mypy doesn't know that min can handle scalars fmin = np.min(frequencies) # type: ignore if unison is None: unison = hz_to_note(fmin, octave=False, unicode=False) if np.isscalar(frequencies): # suppress type check - mypy does not understand scalar checks intervals = frequencies / fmin # type: ignore else: intervals = np.asarray(frequencies) / fmin # mypy does not understand vectorization return notation.interval_to_fjs(intervals, unison=unison, unicode=unicode) # type: ignore