Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.
librosa.mu_compress
- librosa.mu_compress(x, *, mu=255, quantize=True)[source]
mu-law compression
Given an input signal
-1 <= x <= 1
, the mu-law compression is calculated by:sign(x) * ln(1 + mu * abs(x)) / ln(1 + mu)
- Parameters:
- xnp.ndarray with values in [-1, +1]
The input signal to compress
- mupositive number
The compression parameter. Values of the form
2**n - 1
(e.g., 15, 31, 63, etc.) are most common.- quantizebool
If
True
, quantize the compressed values into1 + mu
distinct integer values.If
False
, mu-law compression is applied without quantization.
- Returns:
- x_compressednp.ndarray
The compressed signal.
- Raises:
- ParameterError
If
x
has values outside the range [-1, +1] Ifmu <= 0
See also
Examples
Compression without quantization
>>> x = np.linspace(-1, 1, num=16) >>> x array([-1. , -0.86666667, -0.73333333, -0.6 , -0.46666667, -0.33333333, -0.2 , -0.06666667, 0.06666667, 0.2 , 0.33333333, 0.46666667, 0.6 , 0.73333333, 0.86666667, 1. ]) >>> y = librosa.mu_compress(x, quantize=False) >>> y array([-1. , -0.97430198, -0.94432361, -0.90834832, -0.86336132, -0.80328309, -0.71255496, -0.52124063, 0.52124063, 0.71255496, 0.80328309, 0.86336132, 0.90834832, 0.94432361, 0.97430198, 1. ])
Compression with quantization
>>> y = librosa.mu_compress(x, quantize=True) >>> y array([-128, -124, -120, -116, -110, -102, -91, -66, 66, 91, 102, 110, 116, 120, 124, 127])
Compression with quantization and a smaller range
>>> y = librosa.mu_compress(x, mu=15, quantize=True) >>> y array([-8, -7, -7, -6, -6, -5, -4, -2, 2, 4, 5, 6, 6, 7, 7, 7])