Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.11.0.
librosa.hybrid_cqt
- librosa.hybrid_cqt(y, *, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='constant', res_type='soxr_hq', dtype=None)[source]
- Compute the hybrid constant-Q transform of an audio signal. - Here, the hybrid CQT uses the pseudo CQT for higher frequencies where the hop_length is longer than half the filter length and the full CQT for lower frequencies. - Parameters:
- ynp.ndarray [shape=(…, n)]
- audio time series. Multi-channel is supported. 
- srnumber > 0 [scalar]
- sampling rate of - y
- hop_lengthint > 0 [scalar]
- number of samples between successive CQT columns. 
- fminfloat > 0 [scalar]
- Minimum frequency. Defaults to C1 ~= 32.70 Hz 
- n_binsint > 0 [scalar]
- Number of frequency bins, starting at - fmin
- bins_per_octaveint > 0 [scalar]
- Number of bins per octave 
- tuningNone or float
- Tuning offset in fractions of a bin. - If - None, tuning will be automatically estimated from the signal.- The minimum frequency of the resulting CQT will be modified to - fmin * 2**(tuning / bins_per_octave).
- filter_scalefloat > 0
- Filter filter_scale factor. Larger values use longer windows. 
- norm{inf, -inf, 0, float > 0}
- Type of norm to use for basis function normalization. See - librosa.util.normalize.
- sparsityfloat in [0, 1)
- Sparsify the CQT basis by discarding up to - sparsityfraction of the energy in each basis.- Set - sparsity=0to disable sparsification.
- windowstr, tuple, number, or function
- Window specification for the basis filters. See - filters.get_windowfor details.
- scalebool
- If - True, scale the CQT response by square-root the length of each channel’s filter. This is analogous to- norm='ortho'in FFT.- If - False, do not scale the CQT. This is analogous to- norm=Nonein FFT.
- pad_modestring
- Padding mode for centered frame analysis. - See also: - librosa.stftand- numpy.pad.
- res_typestring
- Resampling mode. See - librosa.cqtfor details.
- dtypenp.dtype, optional
- The complex dtype to use for computing the CQT. By default, this is inferred to match the precision of the input signal. 
 
- Returns:
- CQTnp.ndarray [shape=(…, n_bins, t), dtype=np.float]
- Constant-Q energy for each frequency at each time. 
 
 - See also - Notes - This function caches at level 20.