You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.


librosa.filters.cq_to_chroma(n_input, bins_per_octave=12, n_chroma=12, fmin=None, window=None, base_c=True, dtype=<class 'numpy.float32'>)[source]

Construct a linear transformation matrix to map Constant-Q bins onto chroma bins (i.e., pitch classes).

n_inputint > 0 [scalar]

Number of input components (CQT bins)

bins_per_octaveint > 0 [scalar]

How many bins per octave in the CQT

n_chromaint > 0 [scalar]

Number of output bins (per octave) in the chroma

fminNone or float > 0

Center frequency of the first constant-Q channel. Default: ‘C1’ ~= 32.7 Hz

windowNone or np.ndarray

If provided, the cq_to_chroma filter bank will be convolved with window.


If True, the first chroma bin will start at ‘C’ If False, the first chroma bin will start at ‘A’


The data type of the output basis. By default, uses 32-bit (single-precision) floating point.

cq_to_chromanp.ndarray [shape=(n_chroma, n_input)]

Transformation matrix: Chroma =, CQT)


If n_input is not an integer multiple of n_chroma


This function caches at level 10.


Get a CQT, and wrap bins to chroma

>>> y, sr = librosa.load(librosa.ex('trumpet'))
>>> CQT = np.abs(librosa.cqt(y, sr=sr))
>>> chroma_map = librosa.filters.cq_to_chroma(CQT.shape[0])
>>> chromagram =
>>> # Max-normalize each time step
>>> chromagram = librosa.util.normalize(chromagram, axis=0)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=3, sharex=True)
>>> imgcq = librosa.display.specshow(librosa.amplitude_to_db(CQT,
...                                                         ref=np.max),
...                                  y_axis='cqt_note', x_axis='time',
...                                  ax=ax[0])
>>> ax[0].set(title='CQT Power')
>>> ax[0].label_outer()
>>> librosa.display.specshow(chromagram, y_axis='chroma', x_axis='time',
...                          ax=ax[1])
>>> ax[1].set(title='Chroma (wrapped CQT)')
>>> ax[1].label_outer()
>>> chroma = librosa.feature.chroma_stft(y=y, sr=sr)
>>> imgchroma = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[2])
>>> ax[2].set(title='librosa.feature.chroma_stft')