Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.
librosa.util.stack
- librosa.util.stack(arrays, axis=0)[source]
Stack one or more arrays along a target axis.
This function is similar to np.stack, except that memory contiguity is retained when stacking along the first dimension.
This is useful when combining multiple monophonic audio signals into a multi-channel signal, or when stacking multiple feature representations to form a multi-dimensional array.
- Parameters:
- arrayslist
one or more np.ndarray
- axisinteger
The target axis along which to stack.
axis=0
creates a new first axis, andaxis=-1
creates a new last axis.
- Returns:
- arr_stacknp.ndarray [shape=(len(arrays), array_shape) or shape=(array_shape, len(arrays))]
The input arrays, stacked along the target dimension.
If
axis=0
, thenarr_stack
will be F-contiguous. Otherwise,arr_stack
will be C-contiguous by default, as computed by np.stack.
- Raises:
- ParameterError
If
arrays
do not all have the same shapeIf no
arrays
are given
See also
Examples
Combine two buffers into a contiguous arrays
>>> y_left = np.ones(5) >>> y_right = -np.ones(5) >>> y_stereo = librosa.util.stack([y_left, y_right], axis=0) >>> y_stereo array([[ 1., 1., 1., 1., 1.], [-1., -1., -1., -1., -1.]]) >>> y_stereo.flags C_CONTIGUOUS : False F_CONTIGUOUS : True OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False
Or along the trailing axis
>>> y_stereo = librosa.util.stack([y_left, y_right], axis=-1) >>> y_stereo array([[ 1., -1.], [ 1., -1.], [ 1., -1.], [ 1., -1.], [ 1., -1.]]) >>> y_stereo.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False