Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.griffinlim¶
- librosa.griffinlim(S, *, n_iter=32, hop_length=None, win_length=None, n_fft=None, window='hann', center=True, dtype=None, length=None, pad_mode='constant', momentum=0.99, init='random', random_state=None)[source]¶
Approximate magnitude spectrogram inversion using the “fast” Griffin-Lim algorithm.
Given a short-time Fourier transform magnitude matrix (
S
), the algorithm randomly initializes phase estimates, and then alternates forward- and inverse-STFT operations. 1Note that this assumes reconstruction of a real-valued time-domain signal, and that
S
contains only the non-negative frequencies (as computed bystft
).The “fast” GL method 2 uses a momentum parameter to accelerate convergence.
- 1
D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
- 2
Perraudin, N., Balazs, P., & Søndergaard, P. L. “A fast Griffin-Lim algorithm,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013.
- Parameters
- Snp.ndarray [shape=(…, n_fft // 2 + 1, t), non-negative]
An array of short-time Fourier transform magnitudes as produced by
stft
.- n_iterint > 0
The number of iterations to run
- hop_lengthNone or int > 0
The hop length of the STFT. If not provided, it will default to
n_fft // 4
- win_lengthNone or int > 0
The window length of the STFT. By default, it will equal
n_fft
- n_fftNone or int > 0
The number of samples per frame. By default, this will be inferred from the shape of
S
as an even number. However, if an odd frame length was used, you can explicitly setn_fft
.- windowstring, tuple, number, function, or np.ndarray [shape=(n_fft,)]
- centerboolean
If
True
, the STFT is assumed to use centered frames. IfFalse
, the STFT is assumed to use left-aligned frames.- dtypenp.dtype
Real numeric type for the time-domain signal. Default is inferred to match the precision of the input spectrogram.
- lengthNone or int > 0
If provided, the output
y
is zero-padded or clipped to exactlylength
samples.- pad_modestring
If
center=True
, the padding mode to use at the edges of the signal. By default, STFT uses zero padding.- momentumnumber >= 0
The momentum parameter for fast Griffin-Lim. Setting this to 0 recovers the original Griffin-Lim method 1. Values near 1 can lead to faster convergence, but above 1 may not converge.
- initNone or ‘random’ [default]
If ‘random’ (the default), then phase values are initialized randomly according to
random_state
. This is recommended when the inputS
is a magnitude spectrogram with no initial phase estimates.If None, then the phase is initialized from
S
. This is useful when an initial guess for phase can be provided, or when you want to resume Griffin-Lim from a previous output.- random_stateNone, int, or np.random.RandomState
If int, random_state is the seed used by the random number generator for phase initialization.
If np.random.RandomState instance, the random number generator itself.
If None, defaults to the current np.random object.
- Returns
- ynp.ndarray [shape=(…, n)]
time-domain signal reconstructed from
S
See also
Examples
A basic STFT inverse example
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> # Get the magnitude spectrogram >>> S = np.abs(librosa.stft(y)) >>> # Invert using Griffin-Lim >>> y_inv = librosa.griffinlim(S) >>> # Invert without estimating phase >>> y_istft = librosa.istft(S)
Wave-plot the results
>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) >>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0]) >>> ax[0].set(title='Original', xlabel=None) >>> ax[0].label_outer() >>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1]) >>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None) >>> ax[1].label_outer() >>> librosa.display.waveshow(y_istft, sr=sr, color='r', ax=ax[2]) >>> ax[2].set_title('Magnitude-only istft reconstruction')