Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.onset.onset_detect¶
- librosa.onset.onset_detect(*, y=None, sr=22050, onset_envelope=None, hop_length=512, backtrack=False, energy=None, units='frames', normalize=True, **kwargs)[source]¶
Locate note onset events by picking peaks in an onset strength envelope.
The peak_pick parameters were chosen by large-scale hyper-parameter optimization over the dataset provided by 1.
- Parameters
- ynp.ndarray [shape=(n,)]
audio time series, must be monophonic
- srnumber > 0 [scalar]
sampling rate of
y
- onset_envelopenp.ndarray [shape=(m,)]
(optional) pre-computed onset strength envelope
- hop_lengthint > 0 [scalar]
hop length (in samples)
- units{‘frames’, ‘samples’, ‘time’}
The units to encode detected onset events in. By default, ‘frames’ are used.
- backtrackbool
If
True
, detected onset events are backtracked to the nearest preceding minimum ofenergy
.This is primarily useful when using onsets as slice points for segmentation.
- energynp.ndarray [shape=(m,)] (optional)
An energy function to use for backtracking detected onset events. If none is provided, then
onset_envelope
is used.- normalizebool
If
True
(default), normalize the onset envelope to have minimum of 0 and maximum of 1 prior to detection. This is helpful for standardizing the parameters oflibrosa.util.peak_pick
.Otherwise, the onset envelope is left unnormalized.
- **kwargsadditional keyword arguments
Additional parameters for peak picking.
See
librosa.util.peak_pick
for details.
- Returns
- onsetsnp.ndarray [shape=(n_onsets,)]
estimated positions of detected onsets, in whichever units are specified. By default, frame indices.
Note
If no onset strength could be detected, onset_detect returns an empty list.
- Raises
- ParameterError
if neither
y
noronsets
are providedor if
units
is not one of ‘frames’, ‘samples’, or ‘time’
See also
onset_strength
compute onset strength per-frame
onset_backtrack
backtracking onset events
librosa.util.peak_pick
pick peaks from a time series
Examples
Get onset times from a signal
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> librosa.onset.onset_detect(y=y, sr=sr, units='time') array([0.07 , 0.232, 0.395, 0.604, 0.743, 0.929, 1.045, 1.115, 1.416, 1.672, 1.881, 2.043, 2.206, 2.368, 2.554, 3.019])
Or use a pre-computed onset envelope
>>> o_env = librosa.onset.onset_strength(y=y, sr=sr) >>> times = librosa.times_like(o_env, sr=sr) >>> onset_frames = librosa.onset.onset_detect(onset_envelope=o_env, sr=sr)
>>> import matplotlib.pyplot as plt >>> D = np.abs(librosa.stft(y)) >>> fig, ax = plt.subplots(nrows=2, sharex=True) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... x_axis='time', y_axis='log', ax=ax[0]) >>> ax[0].set(title='Power spectrogram') >>> ax[0].label_outer() >>> ax[1].plot(times, o_env, label='Onset strength') >>> ax[1].vlines(times[onset_frames], 0, o_env.max(), color='r', alpha=0.9, ... linestyle='--', label='Onsets') >>> ax[1].legend()