Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.samples_like¶
- librosa.samples_like(X, *, hop_length=512, n_fft=None, axis=- 1)[source]¶
Return an array of sample indices to match the time axis from a feature matrix.
- Parameters
- Xnp.ndarray or scalar
If ndarray, X is a feature matrix, e.g. STFT, chromagram, or mel spectrogram.
If scalar, X represents the number of frames.
- hop_lengthint > 0 [scalar]
number of samples between successive frames
- n_fftNone or int > 0 [scalar]
Optional: length of the FFT window. If given, time conversion will include an offset of
n_fft // 2
to counteract windowing effects when using a non-centered STFT.- axisint [scalar]
The axis representing the time axis of
X
. By default, the last axis (-1) is taken.
- Returns
- samplesnp.ndarray [shape=(n,)]
ndarray of sample indices corresponding to each frame of
X
.
See also
times_like
Return an array of time values to match the time axis from a feature matrix.
Examples
Provide a feature matrix input:
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> X = librosa.stft(y) >>> samples = librosa.samples_like(X) >>> samples array([ 0, 512, ..., 116736, 117248])
Provide a scalar input:
>>> n_frames = 2647 >>> samples = librosa.samples_like(n_frames) >>> samples array([ 0, 512, 1024, ..., 1353728, 1354240, 1354752])