Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.util.frame¶
- librosa.util.frame(x, *, frame_length, hop_length, axis=- 1, writeable=False, subok=False)[source]¶
Slice a data array into (overlapping) frames.
This implementation uses low-level stride manipulation to avoid making a copy of the data. The resulting frame representation is a new view of the same input data.
For example, a one-dimensional input
x = [0, 1, 2, 3, 4, 5, 6]
can be framed with frame length 3 and hop length 2 in two ways. The first (axis=-1
), results in the arrayx_frames
:[[0, 2, 4], [1, 3, 5], [2, 4, 6]]
where each column
x_frames[:, i]
contains a contiguous slice of the inputx[i * hop_length : i * hop_length + frame_length]
.The second way (
axis=0
) results in the arrayx_frames
:[[0, 1, 2], [2, 3, 4], [4, 5, 6]]
where each row
x_frames[i]
contains a contiguous slice of the input.This generalizes to higher dimensional inputs, as shown in the examples below. In general, the framing operation increments by 1 the number of dimensions, adding a new “frame axis” either before the framing axis (if
axis < 0
) or after the framing axis (ifaxis >= 0
).- Parameters
- xnp.ndarray
Array to frame
- frame_lengthint > 0 [scalar]
Length of the frame
- hop_lengthint > 0 [scalar]
Number of steps to advance between frames
- axisint
The axis along which to frame.
- writeablebool
If
True
, then the framed view ofx
is read-only. IfFalse
, then the framed view is read-write. Note that writing to the framed view will also write to the input arrayx
in this case.- subokbool
If True, sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default).
- Returns
- x_framesnp.ndarray [shape=(…, frame_length, N_FRAMES, …)]
A framed view of
x
, for example withaxis=-1
(framing on the last dimension):x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length]
If
axis=0
(framing on the first dimension), then:x_frames[j] = x[j * hop_length : j * hop_length + frame_length]
- Raises
- ParameterError
If
x.shape[axis] < frame_length
, there is not enough data to fill one frame.If
hop_length < 1
, frames cannot advance.
See also
Examples
Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) >>> frames array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06], [-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05], ..., [ 7.960e-02, -2.335e-01, ..., -6.815e-06, 1.266e-05], [ 9.568e-02, -1.252e-01, ..., 7.397e-06, -1.921e-05]], dtype=float32) >>> y.shape (117601,)
>>> frames.shape (2048, 1806)
Or frame along the first axis instead of the last:
>>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0) >>> frames.shape (1806, 2048)
Frame a stereo signal:
>>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False) >>> y.shape (2, 117601) >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) (2, 2048, 1806)
Carve an STFT into fixed-length patches of 32 frames with 50% overlap
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> S = np.abs(librosa.stft(y)) >>> S.shape (1025, 230) >>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16) >>> S_patch.shape (1025, 32, 13) >>> # The first patch contains the first 32 frames of S >>> np.allclose(S_patch[:, :, 0], S[:, :32]) True >>> # The second patch contains frames 16 to 16+32=48, and so on >>> np.allclose(S_patch[:, :, 1], S[:, 16:48]) True