Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.util.is_unique¶
- librosa.util.is_unique(data, *, axis=- 1)[source]¶
Determine if the input array consists of all unique values along a given axis.
- Parameters
- datanp.ndarray
The input array
- axisint
The target axis
- Returns
- is_unique
Array of booleans indicating whether the data is unique along the chosen axis. This array will have one fewer dimension than the input.
See also
Examples
>>> x = np.vander(np.arange(5)) >>> x array([[ 0, 0, 0, 0, 1], [ 1, 1, 1, 1, 1], [ 16, 8, 4, 2, 1], [ 81, 27, 9, 3, 1], [256, 64, 16, 4, 1]]) >>> # Check uniqueness along rows >>> librosa.util.is_unique(x, axis=0) array([ True, True, True, True, False]) >>> # Check uniqueness along columns >>> librosa.util.is_unique(x, axis=-1) array([False, False, True, True, True])