Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.
librosa.magphase
- librosa.magphase(D, *, power=1)[source]
Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that
D = S * P
.- Parameters:
- Dnp.ndarray [shape=(…, d, t), dtype=complex]
complex-valued spectrogram
- powerfloat > 0
Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc.
- Returns:
- D_magnp.ndarray [shape=(…, d, t), dtype=real]
magnitude of
D
, raised topower
- D_phasenp.ndarray [shape=(…, d, t), dtype=complex]
exp(1.j * phi)
wherephi
is the phase ofD
Examples
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> D = librosa.stft(y) >>> magnitude, phase = librosa.magphase(D) >>> magnitude array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05], [3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05], ..., [7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03], [7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]], dtype=float32) >>> phase array([[ 1. +0.000e+00j, 1. +0.000e+00j, ..., -1. -8.742e-08j, -1. -8.742e-08j], [-1. -8.742e-08j, -0.775-6.317e-01j, ..., -0.885-4.648e-01j, 0.472-8.815e-01j], ..., [ 1. -4.342e-12j, 0.028-9.996e-01j, ..., -0.222-9.751e-01j, -0.75 -6.610e-01j], [-1. -8.742e-08j, -1. -8.742e-08j, ..., 1. +0.000e+00j, 1. +0.000e+00j]], dtype=complex64)
Or get the phase angle (in radians)
>>> np.angle(phase) array([[ 0.000e+00, 0.000e+00, ..., -3.142e+00, -3.142e+00], [-3.142e+00, -2.458e+00, ..., -2.658e+00, -1.079e+00], ..., [-4.342e-12, -1.543e+00, ..., -1.794e+00, -2.419e+00], [-3.142e+00, -3.142e+00, ..., 0.000e+00, 0.000e+00]], dtype=float32)