Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.
librosa.util.sparsify_rows
- librosa.util.sparsify_rows(x, *, quantile=0.01, dtype=None)[source]
Return a row-sparse matrix approximating the input
- Parameters:
- xnp.ndarray [ndim <= 2]
The input matrix to sparsify.
- quantilefloat in [0, 1.0)
Percentage of magnitude to discard in each row of
x
- dtypenp.dtype, optional
The dtype of the output array. If not provided, then
x.dtype
will be used.
- Returns:
- x_sparse
scipy.sparse.csr_matrix
[shape=x.shape] Row-sparsified approximation of
x
If
x.ndim == 1
, thenx
is interpreted as a row vector, andx_sparse.shape == (1, len(x))
.
- x_sparse
- Raises:
- ParameterError
If
x.ndim > 2
If
quantile
lies outside[0, 1.0)
Notes
This function caches at level 40.
Examples
>>> # Construct a Hann window to sparsify >>> x = scipy.signal.hann(32) >>> x array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0.041, 0.01 , 0. ]) >>> # Discard the bottom percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 26 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0. , 0. , 0. ]]) >>> # Discard up to the bottom 10th percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , 0. , 0. , 0. , 0. ]])