Caution

You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.

Source code for librosa.feature.inverse

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''Feature inversion'''

import warnings
import numpy as np
import scipy.fftpack

from ..util.exceptions import ParameterError
from ..core.spectrum import griffinlim
from ..core.spectrum import db_to_power
from ..util.utils import tiny
from .. import filters
from ..util import nnls


__all__ = ['mel_to_stft', 'mel_to_audio',
           'mfcc_to_mel', 'mfcc_to_audio']


[docs]def mel_to_stft(M, sr=22050, n_fft=2048, power=2.0, **kwargs): '''Approximate STFT magnitude from a Mel power spectrogram. Parameters ---------- M : np.ndarray [shape=(n_mels, n), non-negative] The spectrogram as produced by `feature.melspectrogram` sr : number > 0 [scalar] sampling rate of the underlying signal n_fft : int > 0 [scalar] number of FFT components in the resulting STFT power : float > 0 [scalar] Exponent for the magnitude melspectrogram kwargs : additional keyword arguments Mel filter bank parameters. See `librosa.filters.mel` for details Returns ------- S : np.ndarray [shape=(n_fft, t), non-negative] An approximate linear magnitude spectrogram See Also -------- feature.melspectrogram core.stft filters.mel util.nnls Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=5, offset=10) >>> S = np.abs(librosa.stft(y)) >>> mel_spec = librosa.feature.melspectrogram(S=S, sr=sr) >>> S_inv = librosa.feature.inverse.mel_to_stft(mel_spec, sr=sr) Compare the results visually >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2,1,1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max, top_db=None), ... y_axis='log', x_axis='time') >>> plt.colorbar() >>> plt.title('Original STFT') >>> plt.subplot(2,1,2) >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(S_inv - S), ... ref=S.max(), top_db=None), ... vmax=0, y_axis='log', x_axis='time', cmap='magma') >>> plt.title('Residual error (dB)') >>> plt.colorbar() >>> plt.tight_layout() >>> plt.show() ''' # Construct a mel basis with dtype matching the input data mel_basis = filters.mel(sr, n_fft, n_mels=M.shape[0], dtype=M.dtype, **kwargs) # Find the non-negative least squares solution, and apply # the inverse exponent. # We'll do the exponentiation in-place. inverse = nnls(mel_basis, M) return np.power(inverse, 1. / power, out=inverse)
[docs]def mel_to_audio(M, sr=22050, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', power=2.0, n_iter=32, length=None, dtype=np.float32, **kwargs): """Invert a mel power spectrogram to audio using Griffin-Lim. This is primarily a convenience wrapper for: >>> S = librosa.feature.inverse.mel_to_stft(M) >>> y = librosa.griffinlim(S) Parameters ---------- M : np.ndarray [shape=(n_mels, n), non-negative] The spectrogram as produced by `feature.melspectrogram` sr : number > 0 [scalar] sampling rate of the underlying signal n_fft : int > 0 [scalar] number of FFT components in the resulting STFT hop_length : None or int > 0 The hop length of the STFT. If not provided, it will default to `n_fft // 4` win_length : None or int > 0 The window length of the STFT. By default, it will equal `n_fft` window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] A window specification as supported by `stft` or `istft` center : boolean If `True`, the STFT is assumed to use centered frames. If `False`, the STFT is assumed to use left-aligned frames. pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. power : float > 0 [scalar] Exponent for the magnitude melspectrogram n_iter : int > 0 The number of iterations for Griffin-Lim length : None or int > 0 If provided, the output `y` is zero-padded or clipped to exactly `length` samples. dtype : np.dtype Real numeric type for the time-domain signal. Default is 32-bit float. kwargs : additional keyword arguments Mel filter bank parameters Returns ------- y : np.ndarray [shape(n,)] time-domain signal reconstructed from `M` See Also -------- core.griffinlim feature.melspectrogram filters.mel feature.inverse.mel_to_stft """ stft = mel_to_stft(M, sr=sr, n_fft=n_fft, power=power, **kwargs) return griffinlim(stft, n_iter=n_iter, hop_length=hop_length, win_length=win_length, window=window, center=center, dtype=dtype, length=length, pad_mode=pad_mode)
[docs]def mfcc_to_mel(mfcc, n_mels=128, dct_type=2, norm='ortho', ref=1.0, lifter=0): '''Invert Mel-frequency cepstral coefficients to approximate a Mel power spectrogram. This inversion proceeds in two steps: 1. The inverse DCT is applied to the MFCCs 2. `core.db_to_power` is applied to map the dB-scaled result to a power spectrogram Parameters ---------- mfcc : np.ndarray [shape=(n_mfcc, n)] The Mel-frequency cepstral coefficients n_mels : int > 0 The number of Mel frequencies dct_type : {1, 2, 3} Discrete cosine transform (DCT) type By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an orthonormal DCT basis. Normalization is not supported for `dct_type=1`. ref : number or callable Reference power for (inverse) decibel calculation lifter : number >= 0 If `lifter>0`, apply inverse liftering (inverse cepstral filtering): `M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2` Returns ------- M : np.ndarray [shape=(n_mels, n)] An approximate Mel power spectrum recovered from `mfcc` Warns -------- UserWarning due to critical values in lifter array that invokes underflow. See Also -------- mfcc melspectrogram scipy.fftpack.dct ''' if lifter > 0: n_mfcc = mfcc.shape[0] idx = np.arange(1, 1 + n_mfcc, dtype=mfcc.dtype) lifter_sine = 1 + lifter * 0.5 * np.sin(np.pi * idx / lifter)[:, np.newaxis] # raise a UserWarning if lifter array includes critical values if np.any(np.abs(lifter_sine) < np.finfo(lifter_sine.dtype).eps): warnings.warn(message="lifter array includes critial values that may invoke underflow.", category=UserWarning) # lifter mfcc values mfcc = mfcc / (lifter_sine + tiny(mfcc)) elif lifter != 0: raise ParameterError('MFCC to mel lifter must be a non-negative number.') logmel = scipy.fftpack.idct(mfcc, axis=0, type=dct_type, norm=norm, n=n_mels) return db_to_power(logmel, ref=ref)
[docs]def mfcc_to_audio(mfcc, n_mels=128, dct_type=2, norm='ortho', ref=1.0, lifter=0, **kwargs): '''Convert Mel-frequency cepstral coefficients to a time-domain audio signal This function is primarily a convenience wrapper for the following steps: 1. Convert mfcc to Mel power spectrum (`mfcc_to_mel`) 2. Convert Mel power spectrum to time-domain audio (`mel_to_audio`) Parameters ---------- mfcc : np.ndarray [shape=(n_mfcc, n)] The Mel-frequency cepstral coefficients n_mels : int > 0 The number of Mel frequencies dct_type : {1, 2, 3} Discrete cosine transform (DCT) type By default, DCT type-2 is used. norm : None or 'ortho' If `dct_type` is `2 or 3`, setting `norm='ortho'` uses an orthonormal DCT basis. Normalization is not supported for `dct_type=1`. ref : number or callable Reference power for (inverse) decibel calculation lifter : number >= 0 If `lifter>0`, apply inverse liftering (inverse cepstral filtering): `M[n, :] <- M[n, :] / (1 + sin(pi * (n + 1) / lifter)) * lifter / 2` kwargs : additional keyword arguments Parameters to pass through to `mel_to_audio` Returns ------- y : np.ndarray [shape=(n)] A time-domain signal reconstructed from `mfcc` See Also -------- mfcc_to_mel mel_to_audio feature.mfcc core.griffinlim scipy.fftpack.dct ''' mel_spec = mfcc_to_mel(mfcc, n_mels=n_mels, dct_type=dct_type, norm=norm, ref=ref, lifter=lifter) return mel_to_audio(mel_spec, **kwargs)