Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.feature.inverse.mel_to_audio¶
- librosa.feature.inverse.mel_to_audio(M, sr=22050, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', power=2.0, n_iter=32, length=None, dtype=<class 'numpy.float32'>, **kwargs)[source]¶
Invert a mel power spectrogram to audio using Griffin-Lim.
This is primarily a convenience wrapper for:
>>> S = librosa.feature.inverse.mel_to_stft(M) >>> y = librosa.griffinlim(S)
- Parameters
- Mnp.ndarray [shape=(n_mels, n), non-negative]
The spectrogram as produced by feature.melspectrogram
- srnumber > 0 [scalar]
sampling rate of the underlying signal
- n_fftint > 0 [scalar]
number of FFT components in the resulting STFT
- hop_lengthNone or int > 0
The hop length of the STFT. If not provided, it will default to n_fft // 4
- win_lengthNone or int > 0
The window length of the STFT. By default, it will equal n_fft
- windowstring, tuple, number, function, or np.ndarray [shape=(n_fft,)]
A window specification as supported by stft or istft
- centerboolean
If True, the STFT is assumed to use centered frames. If False, the STFT is assumed to use left-aligned frames.
- pad_modestring
If center=True, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding.
- powerfloat > 0 [scalar]
Exponent for the magnitude melspectrogram
- n_iterint > 0
The number of iterations for Griffin-Lim
- lengthNone or int > 0
If provided, the output y is zero-padded or clipped to exactly length samples.
- dtypenp.dtype
Real numeric type for the time-domain signal. Default is 32-bit float.
- kwargsadditional keyword arguments
Mel filter bank parameters
- Returns
- ynp.ndarray [shape(n,)]
time-domain signal reconstructed from M
See also
core.griffinlim
feature.melspectrogram
filters.mel
feature.inverse.mel_to_stft