Caution
You're reading the documentation for a development version. For the latest released version, please have a look at 0.9.1.
librosa.feature.fourier_tempogram¶
- librosa.feature.fourier_tempogram(*, y=None, sr=22050, onset_envelope=None, hop_length=512, win_length=384, center=True, window='hann')[source]¶
Compute the Fourier tempogram: the short-time Fourier transform of the onset strength envelope. 1
- 1
Grosche, Peter, Meinard Müller, and Frank Kurth. “Cyclic tempogram - A mid-level tempo representation for music signals.” ICASSP, 2010.
- Parameters
- ynp.ndarray [shape=(…, n)] or None
Audio time series. Multi-channel is supported.
- srnumber > 0 [scalar]
sampling rate of
y
- onset_envelopenp.ndarray [shape=(…, n)] or None
Optional pre-computed onset strength envelope as provided by
librosa.onset.onset_strength
. Multi-channel is supported.- hop_lengthint > 0
number of audio samples between successive onset measurements
- win_lengthint > 0
length of the onset window (in frames/onset measurements) The default settings (384) corresponds to
384 * hop_length / sr ~= 8.9s
.- centerbool
If True, onset windows are centered. If False, windows are left-aligned.
- windowstring, function, number, tuple, or np.ndarray [shape=(win_length,)]
A window specification as in stft.
- Returns
- tempogramnp.ndarray [shape=(…, win_length // 2 + 1, n)]
Complex short-time Fourier transform of the onset envelope.
- Raises
- ParameterError
if neither
y
noronset_envelope
are providedif
win_length < 1
Examples
>>> # Compute local onset autocorrelation >>> y, sr = librosa.load(librosa.ex('nutcracker')) >>> hop_length = 512 >>> oenv = librosa.onset.onset_strength(y=y, sr=sr, hop_length=hop_length) >>> tempogram = librosa.feature.fourier_tempogram(onset_envelope=oenv, sr=sr, ... hop_length=hop_length) >>> # Compute the auto-correlation tempogram, unnormalized to make comparison easier >>> ac_tempogram = librosa.feature.tempogram(onset_envelope=oenv, sr=sr, ... hop_length=hop_length, norm=None)
>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=3, sharex=True) >>> ax[0].plot(librosa.times_like(oenv), oenv, label='Onset strength') >>> ax[0].legend(frameon=True) >>> ax[0].label_outer() >>> librosa.display.specshow(np.abs(tempogram), sr=sr, hop_length=hop_length, >>> x_axis='time', y_axis='fourier_tempo', cmap='magma', ... ax=ax[1]) >>> ax[1].set(title='Fourier tempogram') >>> ax[1].label_outer() >>> librosa.display.specshow(ac_tempogram, sr=sr, hop_length=hop_length, >>> x_axis='time', y_axis='tempo', cmap='magma', ... ax=ax[2]) >>> ax[2].set(title='Autocorrelation tempogram')