Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.10.2.
librosa.pseudo_cqt
- librosa.pseudo_cqt(y, *, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='constant', dtype=None)[source]
Compute the pseudo constant-Q transform of an audio signal.
This uses a single fft size that is the smallest power of 2 that is greater than or equal to the max of:
The longest CQT filter
2x the hop_length
- Parameters:
- ynp.ndarray [shape=(…, n)]
audio time series. Multi-channel is supported.
- srnumber > 0 [scalar]
sampling rate of
y
- hop_lengthint > 0 [scalar]
number of samples between successive CQT columns.
- fminfloat > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
- n_binsint > 0 [scalar]
Number of frequency bins, starting at
fmin
- bins_per_octaveint > 0 [scalar]
Number of bins per octave
- tuningNone or float
Tuning offset in fractions of a bin.
If
None
, tuning will be automatically estimated from the signal.The minimum frequency of the resulting CQT will be modified to
fmin * 2**(tuning / bins_per_octave)
.- filter_scalefloat > 0
Filter filter_scale factor. Larger values use longer windows.
- norm{inf, -inf, 0, float > 0}
Type of norm to use for basis function normalization. See
librosa.util.normalize
.- sparsityfloat in [0, 1)
Sparsify the CQT basis by discarding up to
sparsity
fraction of the energy in each basis.Set
sparsity=0
to disable sparsification.- windowstr, tuple, number, or function
Window specification for the basis filters. See
filters.get_window
for details.- scalebool
If
True
, scale the CQT response by square-root the length of each channel’s filter. This is analogous tonorm='ortho'
in FFT.If
False
, do not scale the CQT. This is analogous tonorm=None
in FFT.- pad_modestring
Padding mode for centered frame analysis.
See also:
librosa.stft
andnumpy.pad
.- dtypenp.dtype, optional
The complex data type for CQT calculations. By default, this is inferred to match the precision of the input signal.
- Returns:
- CQTnp.ndarray [shape=(…, n_bins, t), dtype=np.float]
Pseudo Constant-Q energy for each frequency at each time.
Notes
This function caches at level 20.