Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
Source code for librosa.core.constantq
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''Constant-Q transforms'''
from __future__ import division
import warnings
import numpy as np
from numba import jit
from . import audio
from .fft import get_fftlib
from .time_frequency import cqt_frequencies, note_to_hz
from .spectrum import stft, istft
from .pitch import estimate_tuning
from .._cache import cache
from .. import filters
from .. import util
from ..util.exceptions import ParameterError
__all__ = ['cqt', 'hybrid_cqt', 'pseudo_cqt',
           'icqt', 'griffinlim_cqt']
[docs]@cache(level=20)
def cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
        bins_per_octave=12, tuning=0.0, filter_scale=1,
        norm=1, sparsity=0.01, window='hann',
        scale=True, pad_mode='reflect', res_type=None):
    '''Compute the constant-Q transform of an audio signal.
    This implementation is based on the recursive sub-sampling method
    described by [1]_.
    .. [1] Schoerkhuber, Christian, and Anssi Klapuri.
        "Constant-Q transform toolbox for music processing."
        7th Sound and Music Computing Conference, Barcelona, Spain. 2010.
    Parameters
    ----------
    y : np.ndarray [shape=(n,)]
        audio time series
    sr : number > 0 [scalar]
        sampling rate of `y`
    hop_length : int > 0 [scalar]
        number of samples between successive CQT columns.
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    n_bins : int > 0 [scalar]
        Number of frequency bins, starting at `fmin`
    bins_per_octave : int > 0 [scalar]
        Number of bins per octave
    tuning : None or float
        Tuning offset in fractions of a bin.
        If `None`, tuning will be automatically estimated from the signal.
        The minimum frequency of the resulting CQT will be modified to
        `fmin * 2**(tuning / bins_per_octave)`.
    filter_scale : float > 0
        Filter scale factor. Small values (<1) use shorter windows
        for improved time resolution.
    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See `librosa.util.normalize`.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    scale : bool
        If `True`, scale the CQT response by square-root the length of
        each channel's filter.  This is analogous to `norm='ortho'` in FFT.
        If `False`, do not scale the CQT. This is analogous to
        `norm=None` in FFT.
    pad_mode : string
        Padding mode for centered frame analysis.
        See also: `librosa.core.stft` and `np.pad`.
    res_type : string [optional]
        The resampling mode for recursive downsampling.
        By default, `cqt` will adaptively select a resampling mode
        which trades off accuracy at high frequencies for efficiency at low frequencies.
        You can override this by specifying a resampling mode as supported by
        `librosa.core.resample`.  For example, `res_type='fft'` will use a high-quality,
        but potentially slow FFT-based down-sampling, while `res_type='polyphase'` will
        use a fast, but potentially inaccurate down-sampling.
    Returns
    -------
    CQT : np.ndarray [shape=(n_bins, t), dtype=np.complex or np.float]
        Constant-Q value each frequency at each time.
    Raises
    ------
    ParameterError
        If `hop_length` is not an integer multiple of
        `2**(n_bins / bins_per_octave)`
        Or if `y` is too short to support the frequency range of the CQT.
    See Also
    --------
    librosa.core.resample
    librosa.util.normalize
    Notes
    -----
    This function caches at level 20.
    Examples
    --------
    Generate and plot a constant-Q power spectrum
    >>> import matplotlib.pyplot as plt
    >>> y, sr = librosa.load(librosa.util.example_audio_file())
    >>> C = np.abs(librosa.cqt(y, sr=sr))
    >>> librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max),
    ...                          sr=sr, x_axis='time', y_axis='cqt_note')
    >>> plt.colorbar(format='%+2.0f dB')
    >>> plt.title('Constant-Q power spectrum')
    >>> plt.tight_layout()
    >>> plt.show()
    Limit the frequency range
    >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
    ...                 n_bins=60))
    >>> C
    array([[  8.827e-04,   9.293e-04, ...,   3.133e-07,   2.942e-07],
           [  1.076e-03,   1.068e-03, ...,   1.153e-06,   1.148e-06],
           ...,
           [  1.042e-07,   4.087e-07, ...,   1.612e-07,   1.928e-07],
           [  2.363e-07,   5.329e-07, ...,   1.294e-07,   1.611e-07]])
    Using a higher frequency resolution
    >>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('C2'),
    ...                 n_bins=60 * 2, bins_per_octave=12 * 2))
    >>> C
    array([[  1.536e-05,   5.848e-05, ...,   3.241e-07,   2.453e-07],
           [  1.856e-03,   1.854e-03, ...,   2.397e-08,   3.549e-08],
           ...,
           [  2.034e-07,   4.245e-07, ...,   6.213e-08,   1.463e-07],
           [  4.896e-08,   5.407e-07, ...,   9.176e-08,   1.051e-07]])
    '''
    # How many octaves are we dealing with?
    n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
    n_filters = min(bins_per_octave, n_bins)
    len_orig = len(y)
    if fmin is None:
        # C1 by default
        fmin = note_to_hz('C1')
    if tuning is None:
        tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
    # Apply tuning correction
    fmin = fmin * 2.0**(tuning / bins_per_octave)
    # First thing, get the freqs of the top octave
    freqs = cqt_frequencies(n_bins, fmin,
                            bins_per_octave=bins_per_octave)[-bins_per_octave:]
    fmin_t = np.min(freqs)
    fmax_t = np.max(freqs)
    # Determine required resampling quality
    Q = float(filter_scale) / (2.0**(1. / bins_per_octave) - 1)
    filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
    nyquist = sr / 2.0
    auto_resample = False
    if not res_type:
        auto_resample = True
        if filter_cutoff < audio.BW_FASTEST * nyquist:
            res_type = 'kaiser_fast'
        else:
            res_type = 'kaiser_best'
    y, sr, hop_length = __early_downsample(y, sr, hop_length,
                                           res_type,
                                           n_octaves,
                                           nyquist, filter_cutoff, scale)
    cqt_resp = []
    if auto_resample and res_type != 'kaiser_fast':
        # Do the top octave before resampling to allow for fast resampling
        fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t,
                                               n_filters,
                                               bins_per_octave,
                                               filter_scale,
                                               norm,
                                               sparsity,
                                               window=window)
        # Compute the CQT filter response and append it to the stack
        cqt_resp.append(__cqt_response(y, n_fft, hop_length, fft_basis, pad_mode))
        fmin_t /= 2
        fmax_t /= 2
        n_octaves -= 1
        filter_cutoff = fmax_t * (1 + 0.5 * filters.window_bandwidth(window) / Q)
        res_type = 'kaiser_fast'
    # Make sure our hop is long enough to support the bottom octave
    num_twos = __num_two_factors(hop_length)
    if num_twos < n_octaves - 1:
        raise ParameterError('hop_length must be a positive integer '
                             'multiple of 2^{0:d} for {1:d}-octave CQT'
                             .format(n_octaves - 1, n_octaves))
    # Now do the recursive bit
    fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin_t,
                                           n_filters,
                                           bins_per_octave,
                                           filter_scale,
                                           norm,
                                           sparsity,
                                           window=window)
    my_y, my_sr, my_hop = y, sr, hop_length
    # Iterate down the octaves
    for i in range(n_octaves):
        # Resample (except first time)
        if i > 0:
            if len(my_y) < 2:
                raise ParameterError('Input signal length={} is too short for '
                                     '{:d}-octave CQT'.format(len_orig,
                                                              n_octaves))
            my_y = audio.resample(my_y, 2, 1,
                                  res_type=res_type,
                                  scale=True)
            # The re-scale the filters to compensate for downsampling
            fft_basis[:] *= np.sqrt(2)
            my_sr /= 2.0
            my_hop //= 2
        # Compute the cqt filter response and append to the stack
        cqt_resp.append(__cqt_response(my_y, n_fft, my_hop, fft_basis, pad_mode))
    C = __trim_stack(cqt_resp, n_bins)
    if scale:
        lengths = filters.constant_q_lengths(sr, fmin,
                                             n_bins=n_bins,
                                             bins_per_octave=bins_per_octave,
                                             window=window,
                                             filter_scale=filter_scale)
        C /= np.sqrt(lengths[:, np.newaxis])
    return C
[docs]@cache(level=20)
def hybrid_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
               bins_per_octave=12, tuning=0.0, filter_scale=1,
               norm=1, sparsity=0.01, window='hann', scale=True,
               pad_mode='reflect', res_type=None):
    '''Compute the hybrid constant-Q transform of an audio signal.
    Here, the hybrid CQT uses the pseudo CQT for higher frequencies where
    the hop_length is longer than half the filter length and the full CQT
    for lower frequencies.
    Parameters
    ----------
    y : np.ndarray [shape=(n,)]
        audio time series
    sr : number > 0 [scalar]
        sampling rate of `y`
    hop_length : int > 0 [scalar]
        number of samples between successive CQT columns.
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    n_bins : int > 0 [scalar]
        Number of frequency bins, starting at `fmin`
    bins_per_octave : int > 0 [scalar]
        Number of bins per octave
    tuning : None or float
        Tuning offset in fractions of a bin.
        If `None`, tuning will be automatically estimated from the signal.
        The minimum frequency of the resulting CQT will be modified to
        `fmin * 2**(tuning / bins_per_octave)`.
    filter_scale : float > 0
        Filter filter_scale factor. Larger values use longer windows.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    pad_mode : string
        Padding mode for centered frame analysis.
        See also: `librosa.core.stft` and `np.pad`.
    res_type : string
        Resampling mode.  See `librosa.core.cqt` for details.
    Returns
    -------
    CQT : np.ndarray [shape=(n_bins, t), dtype=np.float]
        Constant-Q energy for each frequency at each time.
    Raises
    ------
    ParameterError
        If `hop_length` is not an integer multiple of
        `2**(n_bins / bins_per_octave)`
        Or if `y` is too short to support the frequency range of the CQT.
    See Also
    --------
    cqt
    pseudo_cqt
    Notes
    -----
    This function caches at level 20.
    '''
    if fmin is None:
        # C1 by default
        fmin = note_to_hz('C1')
    if tuning is None:
        tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
    # Apply tuning correction
    fmin = fmin * 2.0**(tuning / bins_per_octave)
    # Get all CQT frequencies
    freqs = cqt_frequencies(n_bins, fmin,
                            bins_per_octave=bins_per_octave)
    # Compute the length of each constant-Q basis function
    lengths = filters.constant_q_lengths(sr, fmin,
                                         n_bins=n_bins,
                                         bins_per_octave=bins_per_octave,
                                         filter_scale=filter_scale,
                                         window=window)
    # Determine which filters to use with Pseudo CQT
    # These are the ones that fit within 2 hop lengths after padding
    pseudo_filters = 2.0**np.ceil(np.log2(lengths)) < 2 * hop_length
    n_bins_pseudo = int(np.sum(pseudo_filters))
    n_bins_full = n_bins - n_bins_pseudo
    cqt_resp = []
    if n_bins_pseudo > 0:
        fmin_pseudo = np.min(freqs[pseudo_filters])
        cqt_resp.append(pseudo_cqt(y, sr,
                                   hop_length=hop_length,
                                   fmin=fmin_pseudo,
                                   n_bins=n_bins_pseudo,
                                   bins_per_octave=bins_per_octave,
                                   filter_scale=filter_scale,
                                   norm=norm,
                                   sparsity=sparsity,
                                   window=window,
                                   scale=scale,
                                   pad_mode=pad_mode))
    if n_bins_full > 0:
        cqt_resp.append(np.abs(cqt(y, sr,
                                   hop_length=hop_length,
                                   fmin=fmin,
                                   n_bins=n_bins_full,
                                   bins_per_octave=bins_per_octave,
                                   filter_scale=filter_scale,
                                   norm=norm,
                                   sparsity=sparsity,
                                   window=window,
                                   scale=scale,
                                   pad_mode=pad_mode,
                                   res_type=res_type)))
    return __trim_stack(cqt_resp, n_bins)
[docs]@cache(level=20)
def pseudo_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84,
               bins_per_octave=12, tuning=0.0, filter_scale=1,
               norm=1, sparsity=0.01, window='hann', scale=True,
               pad_mode='reflect'):
    '''Compute the pseudo constant-Q transform of an audio signal.
    This uses a single fft size that is the smallest power of 2 that is greater
    than or equal to the max of:
        1. The longest CQT filter
        2. 2x the hop_length
    Parameters
    ----------
    y : np.ndarray [shape=(n,)]
        audio time series
    sr : number > 0 [scalar]
        sampling rate of `y`
    hop_length : int > 0 [scalar]
        number of samples between successive CQT columns.
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    n_bins : int > 0 [scalar]
        Number of frequency bins, starting at `fmin`
    bins_per_octave : int > 0 [scalar]
        Number of bins per octave
    tuning : None or float
        Tuning offset in fractions of a bin.
        If `None`, tuning will be automatically estimated from the signal.
        The minimum frequency of the resulting CQT will be modified to
        `fmin * 2**(tuning / bins_per_octave)`.
    filter_scale : float > 0
        Filter filter_scale factor. Larger values use longer windows.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    pad_mode : string
        Padding mode for centered frame analysis.
        See also: `librosa.core.stft` and `np.pad`.
    Returns
    -------
    CQT : np.ndarray [shape=(n_bins, t), dtype=np.float]
        Pseudo Constant-Q energy for each frequency at each time.
    Raises
    ------
    ParameterError
        If `hop_length` is not an integer multiple of
        `2**(n_bins / bins_per_octave)`
        Or if `y` is too short to support the frequency range of the CQT.
    Notes
    -----
    This function caches at level 20.
    '''
    if fmin is None:
        # C1 by default
        fmin = note_to_hz('C1')
    if tuning is None:
        tuning = estimate_tuning(y=y, sr=sr, bins_per_octave=bins_per_octave)
    # Apply tuning correction
    fmin = fmin * 2.0**(tuning / bins_per_octave)
    fft_basis, n_fft, _ = __cqt_filter_fft(sr, fmin, n_bins,
                                           bins_per_octave,
                                           filter_scale,
                                           norm, sparsity,
                                           hop_length=hop_length,
                                           window=window)
    fft_basis = np.abs(fft_basis)
    # Compute the magnitude STFT with Hann window
    D = np.abs(stft(y, n_fft=n_fft, hop_length=hop_length, pad_mode=pad_mode))
    # Project onto the pseudo-cqt basis
    C = fft_basis.dot(D)
    if scale:
        C /= np.sqrt(n_fft)
    else:
        lengths = filters.constant_q_lengths(sr, fmin,
                                             n_bins=n_bins,
                                             bins_per_octave=bins_per_octave,
                                             window=window,
                                             filter_scale=filter_scale)
        C *= np.sqrt(lengths[:, np.newaxis] / n_fft)
    return C
[docs]@cache(level=40)
def icqt(C, sr=22050, hop_length=512, fmin=None, bins_per_octave=12,
         tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann',
         scale=True, length=None, amin=util.Deprecated(), res_type='fft',
         dtype=np.float32):
    '''Compute the inverse constant-Q transform.
    Given a constant-Q transform representation `C` of an audio signal `y`,
    this function produces an approximation `y_hat`.
    Parameters
    ----------
    C : np.ndarray, [shape=(n_bins, n_frames)]
        Constant-Q representation as produced by `core.cqt`
    hop_length : int > 0 [scalar]
        number of samples between successive frames
    fmin : float > 0 [scalar]
        Minimum frequency. Defaults to C1 ~= 32.70 Hz
    tuning : float [scalar]
        Tuning offset in fractions of a bin.
        The minimum frequency of the CQT will be modified to
        `fmin * 2**(tuning / bins_per_octave)`.
    filter_scale : float > 0 [scalar]
        Filter scale factor. Small values (<1) use shorter windows
        for improved time resolution.
    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See `librosa.util.normalize`.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, number, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    scale : bool
        If `True`, scale the CQT response by square-root the length
        of each channel's filter. This is analogous to `norm='ortho'` in FFT.
        If `False`, do not scale the CQT. This is analogous to `norm=None`
        in FFT.
    length : int > 0, optional
        If provided, the output `y` is zero-padded or clipped to exactly
        `length` samples.
    amin : float or None [DEPRECATED]
        .. note:: This parameter is deprecated in 0.7.0 and will be removed in 0.8.0.
    res_type : string
        Resampling mode.  By default, this uses `fft` mode for high-quality
        reconstruction, but this may be slow depending on your signal duration.
        See `librosa.resample` for supported modes.
    dtype : numeric type
        Real numeric type for `y`.  Default is 32-bit float.
    Returns
    -------
    y : np.ndarray, [shape=(n_samples), dtype=np.float]
        Audio time-series reconstructed from the CQT representation.
    See Also
    --------
    cqt
    core.resample
    Notes
    -----
    This function caches at level 40.
    Examples
    --------
    Using default parameters
    >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15)
    >>> C = librosa.cqt(y=y, sr=sr)
    >>> y_hat = librosa.icqt(C=C, sr=sr)
    Or with a different hop length and frequency resolution:
    >>> hop_length = 256
    >>> bins_per_octave = 12 * 3
    >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave,
    ...                 bins_per_octave=bins_per_octave)
    >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length,
    ...                 bins_per_octave=bins_per_octave)
    '''
    if fmin is None:
        fmin = note_to_hz('C1')
    # Apply tuning correction
    fmin = fmin * 2.0**(tuning / bins_per_octave)
    # Get the top octave of frequencies
    n_bins = len(C)
    freqs = cqt_frequencies(n_bins, fmin,
                            bins_per_octave=bins_per_octave)[-bins_per_octave:]
    n_filters = min(n_bins, bins_per_octave)
    fft_basis, n_fft, lengths = __cqt_filter_fft(sr, np.min(freqs),
                                                 n_filters,
                                                 bins_per_octave,
                                                 filter_scale,
                                                 norm,
                                                 sparsity=sparsity,
                                                 window=window)
    if hop_length > min(lengths):
        warnings.warn('hop_length={} exceeds minimum CQT filter length={:.3f}.\n'
                      'This will probably cause unpleasant acoustic artifacts. '
                      'Consider decreasing your hop length or increasing the '
                      'frequency resolution of your CQT.'.format(hop_length, min(lengths)))
    if length is not None:
        n_frames = int(np.ceil((length+max(lengths)) / hop_length))
        C = C[:, :n_frames]
    # The basis gets renormalized by the effective window length above;
    # This step undoes that
    fft_basis = fft_basis.todense() * n_fft / lengths[:, np.newaxis]
    # This step conjugate-transposes the filter
    inv_basis = fft_basis.H
    # How many octaves do we have?
    n_octaves = int(np.ceil(float(n_bins) / bins_per_octave))
    y = None
    for octave in range(n_octaves - 1, -1, -1):
        slice_ = slice(-(octave+1) * bins_per_octave - 1,
                       -(octave) * bins_per_octave - 1)
        # Slice this octave
        C_oct = C[slice_]
        inv_oct = inv_basis[:, -C_oct.shape[0]:]
        oct_hop = hop_length // 2**octave
        # Apply energy corrections
        if scale:
            C_scale = np.sqrt(lengths[-C_oct.shape[0]:, np.newaxis]) / n_fft
        else:
            C_scale = lengths[-C_oct.shape[0]:, np.newaxis] * np.sqrt(2**octave) / n_fft
        # Inverse-project the basis for each octave
        D_oct = inv_oct.dot(C_oct / C_scale)
        # Inverse-STFT that response
        y_oct = istft(D_oct, window='ones', hop_length=oct_hop, dtype=dtype)
        # Up-sample that octave
        if y is None:
            y = y_oct
        else:
            # Up-sample the previous buffer and add in the new one
            # Scipy-resampling is fast here, since it's a power-of-two relation
            y = audio.resample(y, 1, 2, scale=True, res_type=res_type, fix=False)
            y[:len(y_oct)] += y_oct
    if length:
        y = util.fix_length(y, length)
    return y
@cache(level=10)
def __cqt_filter_fft(sr, fmin, n_bins, bins_per_octave,
                     filter_scale, norm, sparsity, hop_length=None,
                     window='hann'):
    '''Generate the frequency domain constant-Q filter basis.'''
    basis, lengths = filters.constant_q(sr,
                                        fmin=fmin,
                                        n_bins=n_bins,
                                        bins_per_octave=bins_per_octave,
                                        filter_scale=filter_scale,
                                        norm=norm,
                                        pad_fft=True,
                                        window=window)
    # Filters are padded up to the nearest integral power of 2
    n_fft = basis.shape[1]
    if (hop_length is not None and
            n_fft < 2.0**(1 + np.ceil(np.log2(hop_length)))):
        n_fft = int(2.0 ** (1 + np.ceil(np.log2(hop_length))))
    # re-normalize bases with respect to the FFT window length
    basis *= lengths[:, np.newaxis] / float(n_fft)
    # FFT and retain only the non-negative frequencies
    fft = get_fftlib()
    fft_basis = fft.fft(basis, n=n_fft, axis=1)[:, :(n_fft // 2)+1]
    # sparsify the basis
    fft_basis = util.sparsify_rows(fft_basis, quantile=sparsity)
    return fft_basis, n_fft, lengths
def __trim_stack(cqt_resp, n_bins):
    '''Helper function to trim and stack a collection of CQT responses'''
    # cleanup any framing errors at the boundaries
    max_col = min(x.shape[1] for x in cqt_resp)
    cqt_resp = np.vstack([x[:, :max_col] for x in cqt_resp][::-1])
    # Finally, clip out any bottom frequencies that we don't really want
    # Transpose magic here to ensure column-contiguity
    return np.asfortranarray(cqt_resp[-n_bins:])
def __cqt_response(y, n_fft, hop_length, fft_basis, mode):
    '''Compute the filter response with a target STFT hop.'''
    # Compute the STFT matrix
    D = stft(y, n_fft=n_fft, hop_length=hop_length,
             window='ones',
             pad_mode=mode)
    # And filter response energy
    return fft_basis.dot(D)
def __early_downsample_count(nyquist, filter_cutoff, hop_length, n_octaves):
    '''Compute the number of early downsampling operations'''
    downsample_count1 = max(0, int(np.ceil(np.log2(audio.BW_FASTEST * nyquist /
                                                   filter_cutoff)) - 1) - 1)
    num_twos = __num_two_factors(hop_length)
    downsample_count2 = max(0, num_twos - n_octaves + 1)
    return min(downsample_count1, downsample_count2)
def __early_downsample(y, sr, hop_length, res_type, n_octaves,
                       nyquist, filter_cutoff, scale):
    '''Perform early downsampling on an audio signal, if it applies.'''
    downsample_count = __early_downsample_count(nyquist, filter_cutoff,
                                                hop_length, n_octaves)
    if downsample_count > 0 and res_type == 'kaiser_fast':
        downsample_factor = 2**(downsample_count)
        hop_length //= downsample_factor
        if len(y) < downsample_factor:
            raise ParameterError('Input signal length={:d} is too short for '
                                 '{:d}-octave CQT'.format(len(y), n_octaves))
        new_sr = sr / float(downsample_factor)
        y = audio.resample(y, sr, new_sr,
                           res_type=res_type,
                           scale=True)
        # If we're not going to length-scale after CQT, we
        # need to compensate for the downsampling factor here
        if not scale:
            y *= np.sqrt(downsample_factor)
        sr = new_sr
    return y, sr, hop_length
@jit(nopython=True, cache=True)
def __num_two_factors(x):
    """Return how many times integer x can be evenly divided by 2.
    Returns 0 for non-positive integers.
    """
    if x <= 0:
        return 0
    num_twos = 0
    while x % 2 == 0:
        num_twos += 1
        x //= 2
    return num_twos
[docs]def griffinlim_cqt(C, n_iter=32, sr=22050, hop_length=512, fmin=None, bins_per_octave=12, tuning=0.0,
                   filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True,
                   pad_mode='reflect', res_type='kaiser_fast', dtype=np.float32,
                   length=None, momentum=0.99, init='random', random_state=None):
    '''Approximate constant-Q magnitude spectrogram inversion using the "fast" Griffin-Lim
    algorithm [1]_ [2]_.
    Given the magnitude of a constant-Q spectrogram (`C`), the algorithm randomly initializes
    phase estimates, and then alternates forward- and inverse-CQT operations.
    This implementation is based on the Griffin-Lim method for Short-time Fourier Transforms,
    but adapted for use with constant-Q spectrograms.
    .. [1] Perraudin, N., Balazs, P., & Søndergaard, P. L.
        "A fast Griffin-Lim algorithm,"
        IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4),
        Oct. 2013.
    .. [2] D. W. Griffin and J. S. Lim,
        "Signal estimation from modified short-time Fourier transform,"
        IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
    Parameters
    ----------
    C : np.ndarray [shape=(n_bins, n_frames)]
        The constant-Q magnitude spectrogram
    n_iter : int > 0
        The number of iterations to run
    sr : number > 0
        Audio sampling rate
    hop_length : int > 0
        The hop length of the CQT
    fmin : number > 0 
        Minimum frequency for the CQT.
        If not provided, it defaults to C1.
    bins_per_octave : int > 0
        Number of bins per octave
    tuning : float
        Tuning deviation from A440, in fractions of a bin
    filter_scale : float > 0
        Filter scale factor. Small values (<1) use shorter windows
        for improved time resolution.
    norm : {inf, -inf, 0, float > 0}
        Type of norm to use for basis function normalization.
        See `librosa.util.normalize`.
    sparsity : float in [0, 1)
        Sparsify the CQT basis by discarding up to `sparsity`
        fraction of the energy in each basis.
        Set `sparsity=0` to disable sparsification.
    window : str, tuple, or function
        Window specification for the basis filters.
        See `filters.get_window` for details.
    scale : bool
        If `True`, scale the CQT response by square-root the length
        of each channel's filter.  This is analogous to `norm='ortho'`
        in FFT.
        If `False`, do not scale the CQT. This is analogous to `norm=None`
        in FFT.
    pad_mode : string
        Padding mode for centered frame analysis.
        See also: `librosa.core.stft` and `np.pad`
    res_type : string
        The resampling mode for recursive downsampling.
        By default, CQT uses an adaptive mode selection to
        trade accuracy at high frequencies for efficiency at low
        frequencies.
        Griffin-Lim uses the efficient (fast) resampling mode by default.
        See `librosa.core.resample` for a list of available options.
    dtype : numeric type
        Real numeric type for `y`.  Default is 32-bit float.
    length : int > 0, optional
        If provided, the output `y` is zero-padded or clipped to exactly
        `length` samples.
    momentum : float > 0
        The momentum parameter for fast Griffin-Lim.
        Setting this to 0 recovers the original Griffin-Lim method [1]_.
        Values near 1 can lead to faster convergence, but above 1 may not converge.
    init : None or 'random' [default]
        If 'random' (the default), then phase values are initialized randomly
        according to `random_state`.  This is recommended when the input `C` is
        a magnitude spectrogram with no initial phase estimates.
        If `None`, then the phase is initialized from `C`.  This is useful when
        an initial guess for phase can be provided, or when you want to resume
        Griffin-Lim from a previous output.
    random_state : None, int, or np.random.RandomState
        If int, random_state is the seed used by the random number generator
        for phase initialization.
        If `np.random.RandomState` instance, the random number generator itself.
        If `None`, defaults to the current `np.random` object.
    Returns
    -------
    y : np.ndarray [shape=(n,)]
        time-domain signal reconstructed from `C`
    See Also
    --------
    cqt
    icqt
    griffinlim
    filters.get_window
    resample
    Examples
    --------
    A basis CQT inverse example
    >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=5, offset=30, sr=None)
    >>> # Get the CQT magnitude, 7 octaves at 36 bins per octave
    >>> C = np.abs(librosa.cqt(y=y, sr=sr, bins_per_octave=36, n_bins=7*36))
    >>> # Invert using Griffin-Lim
    >>> y_inv = librosa.griffinlim_cqt(C, sr=sr, bins_per_octave=36)
    >>> # And invert without estimating phase
    >>> y_icqt = librosa.icqt(C, sr=sr, bins_per_octave=36)
    Wave-plot the results
    >>> import matplotlib.pyplot as plt
    >>> plt.figure()
    >>> ax = plt.subplot(3,1,1)
    >>> librosa.display.waveplot(y, sr=sr, color='b')
    >>> plt.title('Original')
    >>> plt.xlabel('')
    >>> plt.subplot(3,1,2, sharex=ax, sharey=ax)
    >>> librosa.display.waveplot(y_inv, sr=sr, color='g')
    >>> plt.title('Griffin-Lim reconstruction')
    >>> plt.xlabel('')
    >>> plt.subplot(3,1,3, sharex=ax, sharey=ax)
    >>> librosa.display.waveplot(y_icqt, sr=sr, color='r')
    >>> plt.title('Magnitude-only icqt reconstruction')
    >>> plt.tight_layout()
    >>> plt.show()
    '''
    if fmin is None:
        fmin = note_to_hz('C1')
    if random_state is None:
        rng = np.random
    elif isinstance(random_state, int):
        rng = np.random.RandomState(seed=random_state)
    elif isinstance(random_state, np.random.RandomState):
        rng = random_state
    if momentum > 1:
        warnings.warn('Griffin-Lim with momentum={} > 1 can be unstable. '
                      'Proceed with caution!'.format(momentum))
    elif momentum < 0:
        raise ParameterError('griffinlim_cqt() called with momentum={} < 0'.format(momentum))
    # using complex64 will keep the result to minimal necessary precision
    angles = np.empty(C.shape, dtype=np.complex64)
    if init == 'random':
        # randomly initialize the phase
        angles[:] = np.exp(2j * np.pi * rng.rand(*C.shape))
    elif init is None:
        # Initialize an all ones complex matrix
        angles[:] = 1.0
    else:
        raise ParameterError("init={} must either None or 'random'".format(init))
    # And initialize the previous iterate to 0
    rebuilt = 0.
    for _ in range(n_iter):
        # Store the previous iterate
        tprev = rebuilt
        # Invert with our current estimate of the phases
        inverse = icqt(C * angles, sr=sr, hop_length=hop_length,
                       bins_per_octave=bins_per_octave, fmin=fmin,
                       tuning=tuning,filter_scale=filter_scale, window=window, length=length,
                       res_type=res_type, dtype=dtype)
        # Rebuild the spectrogram
        rebuilt = cqt(inverse, sr=sr, bins_per_octave=bins_per_octave, n_bins=C.shape[0],
                      hop_length=hop_length, fmin=fmin, tuning=tuning, filter_scale=filter_scale,
                      window=window, res_type=res_type)
        # Update our phase estimates
        angles[:] = rebuilt - (momentum / (1 + momentum)) * tprev
        angles[:] /= np.abs(angles) + 1e-16
    # Return the final phase estimates
    return icqt(C * angles,
                sr=sr, hop_length=hop_length,
                bins_per_octave=bins_per_octave,
                tuning=tuning,
                filter_scale=filter_scale,
                fmin=fmin,
                window=window,
                length=length,
                res_type=res_type,
                dtype=dtype)