Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.core.pseudo_cqt¶
- librosa.core.pseudo_cqt(y, sr=22050, hop_length=512, fmin=None, n_bins=84, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, pad_mode='reflect')[source]¶
Compute the pseudo constant-Q transform of an audio signal.
This uses a single fft size that is the smallest power of 2 that is greater than or equal to the max of:
The longest CQT filter
2x the hop_length
- Parameters
- ynp.ndarray [shape=(n,)]
audio time series
- srnumber > 0 [scalar]
sampling rate of y
- hop_lengthint > 0 [scalar]
number of samples between successive CQT columns.
- fminfloat > 0 [scalar]
Minimum frequency. Defaults to C1 ~= 32.70 Hz
- n_binsint > 0 [scalar]
Number of frequency bins, starting at fmin
- bins_per_octaveint > 0 [scalar]
Number of bins per octave
- tuningNone or float
Tuning offset in fractions of a bin.
If None, tuning will be automatically estimated from the signal.
The minimum frequency of the resulting CQT will be modified to fmin * 2**(tuning / bins_per_octave).
- filter_scalefloat > 0
Filter filter_scale factor. Larger values use longer windows.
- sparsityfloat in [0, 1)
Sparsify the CQT basis by discarding up to sparsity fraction of the energy in each basis.
Set sparsity=0 to disable sparsification.
- windowstr, tuple, number, or function
Window specification for the basis filters. See filters.get_window for details.
- pad_modestring
Padding mode for centered frame analysis.
See also:
librosa.core.stft
and np.pad.
- Returns
- CQTnp.ndarray [shape=(n_bins, t), dtype=np.float]
Pseudo Constant-Q energy for each frequency at each time.
- Raises
- ParameterError
If hop_length is not an integer multiple of 2**(n_bins / bins_per_octave)
Or if y is too short to support the frequency range of the CQT.
Notes
This function caches at level 20.