Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.core.icqt¶
- librosa.core.icqt(C, sr=22050, hop_length=512, fmin=None, bins_per_octave=12, tuning=0.0, filter_scale=1, norm=1, sparsity=0.01, window='hann', scale=True, length=None, amin=<DEPRECATED parameter>, res_type='fft', dtype=<class 'numpy.float32'>)[source]¶
- Compute the inverse constant-Q transform. - Given a constant-Q transform representation C of an audio signal y, this function produces an approximation y_hat. - Parameters
- Cnp.ndarray, [shape=(n_bins, n_frames)]
- Constant-Q representation as produced by core.cqt 
- hop_lengthint > 0 [scalar]
- number of samples between successive frames 
- fminfloat > 0 [scalar]
- Minimum frequency. Defaults to C1 ~= 32.70 Hz 
- tuningfloat [scalar]
- Tuning offset in fractions of a bin. - The minimum frequency of the CQT will be modified to fmin * 2**(tuning / bins_per_octave). 
- filter_scalefloat > 0 [scalar]
- Filter scale factor. Small values (<1) use shorter windows for improved time resolution. 
- norm{inf, -inf, 0, float > 0}
- Type of norm to use for basis function normalization. See - librosa.util.normalize.
- sparsityfloat in [0, 1)
- Sparsify the CQT basis by discarding up to sparsity fraction of the energy in each basis. - Set sparsity=0 to disable sparsification. 
- windowstr, tuple, number, or function
- Window specification for the basis filters. See filters.get_window for details. 
- scalebool
- If True, scale the CQT response by square-root the length of each channel’s filter. This is analogous to norm=’ortho’ in FFT. - If False, do not scale the CQT. This is analogous to norm=None in FFT. 
- lengthint > 0, optional
- If provided, the output y is zero-padded or clipped to exactly length samples. 
- aminfloat or None [DEPRECATED]
- Note - This parameter is deprecated in 0.7.0 and will be removed in 0.8.0. 
- res_typestring
- Resampling mode. By default, this uses - fftmode for high-quality reconstruction, but this may be slow depending on your signal duration. See- librosa.resamplefor supported modes.
- dtypenumeric type
- Real numeric type for y. Default is 32-bit float. 
 
- Returns
- ynp.ndarray, [shape=(n_samples), dtype=np.float]
- Audio time-series reconstructed from the CQT representation. 
 
 - See also - cqt
- core.resample
 - Notes - This function caches at level 40. - Examples - Using default parameters - >>> y, sr = librosa.load(librosa.util.example_audio_file(), duration=15) >>> C = librosa.cqt(y=y, sr=sr) >>> y_hat = librosa.icqt(C=C, sr=sr) - Or with a different hop length and frequency resolution: - >>> hop_length = 256 >>> bins_per_octave = 12 * 3 >>> C = librosa.cqt(y=y, sr=sr, hop_length=256, n_bins=7*bins_per_octave, ... bins_per_octave=bins_per_octave) >>> y_hat = librosa.icqt(C=C, sr=sr, hop_length=hop_length, ... bins_per_octave=bins_per_octave)