Caution
You're reading the documentation for a development version. For the latest released version, please have a look at 0.10.2.
librosa.feature.melspectrogram
- librosa.feature.melspectrogram(*, y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='constant', power=2.0, **kwargs)[source]
Compute a mel-scaled spectrogram.
If a spectrogram input
S
is provided, then it is mapped directly onto the mel basis bymel_f.dot(S)
.If a time-series input
y, sr
is provided, then its magnitude spectrogramS
is first computed, and then mapped onto the mel scale bymel_f.dot(S**power)
.By default,
power=2
operates on a power spectrum.- Parameters:
- ynp.ndarray [shape=(…, n)] or None
audio time-series. Multi-channel is supported.
- srnumber > 0 [scalar]
sampling rate of
y
- Snp.ndarray [shape=(…, d, t)]
spectrogram
- n_fftint > 0 [scalar]
length of the FFT window
- hop_lengthint > 0 [scalar]
number of samples between successive frames. See
librosa.stft
- win_lengthint <= n_fft [scalar]
Each frame of audio is windowed by window(). The window will be of length win_length and then padded with zeros to match
n_fft
. If unspecified, defaults towin_length = n_fft
.- windowstring, tuple, number, function, or np.ndarray [shape=(n_fft,)]
a window specification (string, tuple, or number); see
scipy.signal.get_window
a window function, such as
scipy.signal.windows.hann
a vector or array of length
n_fft
- centerboolean
If True, the signal
y
is padded so that framet
is centered aty[t * hop_length]
.If False, then frame
t
begins aty[t * hop_length]
- pad_modestring
If
center=True
, the padding mode to use at the edges of the signal. By default, STFT uses zero padding.- powerfloat > 0 [scalar]
Exponent for the magnitude melspectrogram. e.g., 1 for energy, 2 for power, etc.
- **kwargsadditional keyword arguments for Mel filter bank parameters
- n_melsint > 0 [scalar]
number of Mel bands to generate
- fminfloat >= 0 [scalar]
lowest frequency (in Hz)
- fmaxfloat >= 0 [scalar]
highest frequency (in Hz). If None, use
fmax = sr / 2.0
- htkbool [scalar]
use HTK formula instead of Slaney
- norm{None, ‘slaney’, or number} [scalar]
If ‘slaney’, divide the triangular mel weights by the width of the mel band (area normalization). If numeric, use
librosa.util.normalize
to normalize each filter by to unit l_p norm. Seelibrosa.util.normalize
for a full description of supported norm values (including +-np.inf). Otherwise, leave all the triangles aiming for a peak value of 1.0- dtypenp.dtype
The data type of the output basis. By default, uses 32-bit (single-precision) floating point.
- Returns:
- Snp.ndarray [shape=(…, n_mels, t)]
Mel spectrogram
See also
librosa.filters.mel
Mel filter bank construction
librosa.stft
Short-time Fourier Transform
Examples
>>> y, sr = librosa.load(librosa.ex('trumpet')) >>> librosa.feature.melspectrogram(y=y, sr=sr) array([[3.837e-06, 1.451e-06, ..., 8.352e-14, 1.296e-11], [2.213e-05, 7.866e-06, ..., 8.532e-14, 1.329e-11], ..., [1.115e-05, 5.192e-06, ..., 3.675e-08, 2.470e-08], [6.473e-07, 4.402e-07, ..., 1.794e-08, 2.908e-08]], dtype=float32)
Using a pre-computed power spectrogram would give the same result:
>>> D = np.abs(librosa.stft(y))**2 >>> S = librosa.feature.melspectrogram(S=D, sr=sr)
Display of mel-frequency spectrogram coefficients, with custom arguments for mel filterbank construction (default is fmax=sr/2):
>>> # Passing through arguments to the Mel filters >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, ... fmax=8000)
>>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> S_dB = librosa.power_to_db(S, ref=np.max) >>> img = librosa.display.specshow(S_dB, x_axis='time', ... y_axis='mel', sr=sr, ... fmax=8000, ax=ax) >>> fig.colorbar(img, ax=ax, format='%+2.0f dB') >>> ax.set(title='Mel-frequency spectrogram')