Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.feature.poly_features¶
- librosa.feature.poly_features(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', order=1, freq=None)[source]¶
Get coefficients of fitting an nth-order polynomial to the columns of a spectrogram.
- Parameters
- ynp.ndarray [shape=(n,)] or None
audio time series
- srnumber > 0 [scalar]
audio sampling rate of y
- Snp.ndarray [shape=(d, t)] or None
(optional) spectrogram magnitude
- n_fftint > 0 [scalar]
FFT window size
- hop_lengthint > 0 [scalar]
hop length for STFT. See
librosa.core.stft
for details.- win_lengthint <= n_fft [scalar]
Each frame of audio is windowed by window(). The window will be of length win_length and then padded with zeros to match n_fft.
If unspecified, defaults to
win_length = n_fft
.- windowstring, tuple, number, function, or np.ndarray [shape=(n_fft,)]
a window specification (string, tuple, or number); see
scipy.signal.get_window
a window function, such as
scipy.signal.hanning
a vector or array of length n_fft
- centerboolean
If True, the signal y is padded so that frame t is centered at y[t * hop_length].
If False, then frame t begins at y[t * hop_length]
- pad_modestring
If center=True, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding.
- orderint > 0
order of the polynomial to fit
- freqNone or np.ndarray [shape=(d,) or shape=(d, t)]
Center frequencies for spectrogram bins. If None, then FFT bin center frequencies are used. Otherwise, it can be a single array of d center frequencies, or a matrix of center frequencies as constructed by
librosa.core.ifgram
- Returns
- coefficientsnp.ndarray [shape=(order+1, t)]
polynomial coefficients for each frame.
coeffecients[0] corresponds to the highest degree (order),
coefficients[1] corresponds to the next highest degree (order-1),
down to the constant term coefficients[order].
Examples
>>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y))
Fit a degree-0 polynomial (constant) to each frame
>>> p0 = librosa.feature.poly_features(S=S, order=0)
Fit a linear polynomial to each frame
>>> p1 = librosa.feature.poly_features(S=S, order=1)
Fit a quadratic to each frame
>>> p2 = librosa.feature.poly_features(S=S, order=2)
Plot the results for comparison
>>> import matplotlib.pyplot as plt >>> plt.figure(figsize=(8, 8)) >>> ax = plt.subplot(4,1,1) >>> plt.plot(p2[2], label='order=2', alpha=0.8) >>> plt.plot(p1[1], label='order=1', alpha=0.8) >>> plt.plot(p0[0], label='order=0', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Constant') >>> plt.legend() >>> plt.subplot(4,1,2, sharex=ax) >>> plt.plot(p2[1], label='order=2', alpha=0.8) >>> plt.plot(p1[0], label='order=1', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Linear') >>> plt.subplot(4,1,3, sharex=ax) >>> plt.plot(p2[0], label='order=2', alpha=0.8) >>> plt.xticks([]) >>> plt.ylabel('Quadratic') >>> plt.subplot(4,1,4, sharex=ax) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max), ... y_axis='log') >>> plt.tight_layout() >>> plt.show()