Caution
You're reading an old version of this documentation. If you want up-to-date information, please have a look at 0.9.1.
librosa.feature.spectral_flatness¶
- librosa.feature.spectral_flatness(y=None, S=None, n_fft=2048, hop_length=512, win_length=None, window='hann', center=True, pad_mode='reflect', amin=1e-10, power=2.0)[source]¶
Compute spectral flatness
Spectral flatness (or tonality coefficient) is a measure to quantify how much noise-like a sound is, as opposed to being tone-like [1]. A high spectral flatness (closer to 1.0) indicates the spectrum is similar to white noise. It is often converted to decibel.
- 1
Dubnov, Shlomo “Generalization of spectral flatness measure for non-gaussian linear processes” IEEE Signal Processing Letters, 2004, Vol. 11.
- Parameters
- ynp.ndarray [shape=(n,)] or None
audio time series
- Snp.ndarray [shape=(d, t)] or None
(optional) pre-computed spectrogram magnitude
- n_fftint > 0 [scalar]
FFT window size
- hop_lengthint > 0 [scalar]
hop length for STFT. See
librosa.core.stft
for details.- win_lengthint <= n_fft [scalar]
Each frame of audio is windowed by window(). The window will be of length win_length and then padded with zeros to match n_fft.
If unspecified, defaults to
win_length = n_fft
.- windowstring, tuple, number, function, or np.ndarray [shape=(n_fft,)]
a window specification (string, tuple, or number); see
scipy.signal.get_window
a window function, such as
scipy.signal.hanning
a vector or array of length n_fft
- centerboolean
If True, the signal y is padded so that frame t is centered at y[t * hop_length].
If False, then frame t begins at y[t * hop_length]
- pad_modestring
If center=True, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding.
- aminfloat > 0 [scalar]
minimum threshold for S (=added noise floor for numerical stability)
- powerfloat > 0 [scalar]
Exponent for the magnitude spectrogram. e.g., 1 for energy, 2 for power, etc. Power spectrogram is usually used for computing spectral flatness.
- Returns
- flatnessnp.ndarray [shape=(1, t)]
spectral flatness for each frame. The returned value is in [0, 1] and often converted to dB scale.
Examples
From time-series input
>>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> flatness = librosa.feature.spectral_flatness(y=y) >>> flatness array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32)
From spectrogram input
>>> S, phase = librosa.magphase(librosa.stft(y)) >>> librosa.feature.spectral_flatness(S=S) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32)
From power spectrogram input
>>> S, phase = librosa.magphase(librosa.stft(y)) >>> S_power = S ** 2 >>> librosa.feature.spectral_flatness(S=S_power, power=1.0) array([[ 1.00000e+00, 5.82299e-03, 5.64624e-04, ..., 9.99063e-01, 1.00000e+00, 1.00000e+00]], dtype=float32)